Episyenites—Characteristics, Genetic Constraints, and Mineral Potential
E. Suikkanen & O. T. RämöAbstract
Episyenites are sub-solidus, quartz-depleted alkali-feldspar-rich rocks. They form veins and lenticular bodies in granitoid rocks and migmatites in a late- to post-orogenic or anorogenic setting. Leaching of quartz is usually a response to a flux of weakly saline hydrothermal solution in circulation cells above cooling intrusions, where sufficient fluid-rockratios and thermal gradients are achieved. Fluid Si-undersaturation is achieved by rapid cooling within the field of retrograde Si solubility or by temperature and pressure increase outside retrograde conditions. Some quartz may also be consumed in metasomatic reactions and in response to pressure fluctuation in sealed episyenite bodies. The small size and overall rarity of episyenites imply that conditions for episyenite formation are not commonly encountered in the crust. In addition to quartz depletion, episyenites record complex histories of metasomatic alteration and hydrothermal mineral growth. Nearly all episyenites have undergone Na-metasomatism, which may have led to the formation of nearly monomineralic albitite, and which is occasionally followed by late K-metasomatism, phyllic alteration,and argillization. Depending on the effectiveness of later compaction, recrystallization and vug-filling episyenites may preserve the macroscopic porosity formed by quartz dissolution and brittle deformation. Vuggy episyenites can act as significant sinks for metals carried by crustal fluids and host many significant U, Sn, and Au deposits worldwide. Rare earth-critical syenitic fenites around alkaline intrusions share mineralogical and genetic traits with episyenites.
دكتور / عبدالعاطي بدر سالمان جيولوجي استشاري، مصر [email protected]
نشرت فى 1 ديسمبر 2019
بواسطة absalman
دكتور: عبدالعاطي بدر سالمان
Nuclear Education Geology & Development »
ابحث
تسجيل الدخول
عدد زيارات الموقع
1,463,908
ساحة النقاش