WWW. Abastaher.com

عباس لصيانه وتوريد وتركيب الغلايات البخارية ووحدات معالجة المياة RO ومحطات الصرف الصناعى

الغلايات البخارية

edit

عباس لصيانة واصلاح وتوريد وتركيب الغلايات البخارية ووحدات معالجة المياة ووحدات معالجة الصرف الصناعى

Facilities management consultants are experts who help business owners navigate a complex subject.  They can provide expert advice on utility services and help businesses get energy through their relationships with vetted energy suppliers.

 

  Also, the Facilities Management Consultant offers more than that.  Experienced facilities management consultants will not only help clients with their services but will help them to run their business better by managing their facilities wisely.

 

  One of the best things a business owner can do is to hire a facilities management consultant to help them with energy budgeting and capital planning.  Energy makes up one of the most expensive cost centers in a business, and it's also one of the most volatile.

We apply our expertise in analyzing complex utility bills to reduce utility expenses for your organization. We are advocates of lower costs. While the service provider's primary concern is to maximize their profits, our interest is to maximize your profits.

 

  In addition, our team of analysts are certified experts in a wide range of topics, such as energy procurement, metering and verification, energy auditing, and renewable energy, among others. As such, we can share with you ways to reduce your utility expenses along with your broader energy goals and one-minute market trends.

Our Mission Statements

 

We strive to provide our clients with cost effective and the best in class solutions to enhance their competitive advantage.

 

 

We understand and proactively respond to clients' need by leveraging our years of experience and expertise in improving data and information management aiming to deliver optimum productivity and achieve greater return on investment.

 

 

By upholding the core values, we value the relationships with our clients, partners and stake

holders.

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 76 مشاهدة
نشرت فى 28 يوليو 2023 بواسطة abastaher

https://www.youtube.com/@user-no7uq9fu8m

My YouTube channel

 

عباس طاهر صالح 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 47 مشاهدة
نشرت فى 12 ديسمبر 2022 بواسطة abastaher

 

.

الغلايات البخاريه عباس طاهر صالح - YouTube 

.

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 113 مشاهدة
نشرت فى 17 سبتمبر 2020 بواسطة abastaher

 

قناة متخصصة في الغلايات البخاريه ومحطات معالجة المياه والصرف الصناعي وابراج التبريد 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 176 مشاهدة
نشرت فى 9 سبتمبر 2020 بواسطة abastaher

https://www.youtube.com/channel/UC3b2wtzwizWaLAiI7GA8z3w

 

قناتي على youtube متخصصة في كل ما يتعلق بي الغلايات البخاريه ومحطات معالجة المياه والصرف الصناعي وابراج التبريد 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 128 مشاهدة
نشرت فى 7 سبتمبر 2020 بواسطة abastaher
abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 612 مشاهدة
نشرت فى 19 نوفمبر 2014 بواسطة abastaher

ما

المقصود بكفاءة الغلاية ‏Boiler Efficiency‏ ؟ و كيفية حسابها و عوامل تحسينها؟ تعتبر عملية الأحتراق هو العنصر الأساسى فى كفاءة الغلايات البخارية بشكل عام . و لحساب كفاءة الغلاية = الحرارة الصادرة من البخار ×100 الحرارة الذى يوفرها الوقود و يتم حساب الحرارة الصادرة من البخار عم طريق معرفة الأتى:- 1- درجة حرارة مياة التغذية 2- قيمة ضغط البخار الصادر من االمرجل البخارى 3- معدل تدفق البخار أما الحرارة الذى يوفرها الوقود (القيمة الحرارية ) و يمكن التعبير عن هذه القيمة بطريقتين أما ير عن هذه القيمة بطريقتين أما ير عن هذه القيمة بطريقتين كما يلى:- 1- القيمة الحرارية الأجمالية Gross Calorific Value وهو عبارة عن المجموع النظرى للطاقة فى الوقود المستخدمة لتبخير المياة داخل المرجل البخارى. Gross Calorific Value‎ Fuel Type 40.1 MJ/L Light oil ‎41.1 MJ/L‎ Heavy oil 38.0MJ/M3 Natural gas 2- القيمة الحرارية الصافية Net Calorific Value‎ و هذه القيمة تستخدم عادة لحساب الكفاءة المرجل. صافي القيمة الحرارية ≈ القيمة الحرارية الإجمالي - 10٪ الهواءAir الوقود Fuel الأحتراق Heat الحرارة عملية الأحتراق : Carbon+ Hydrogen + Oxygen+ Nitrogen CO2+ H2O+ N2 و تعتبر الأنبعاثات الحرارية و الغازية من المداخن مقياس أخر لكفاءة الغلايات البخارية حيث كلما زادت هذه الأنبعاثات يقلل من كفاءة الغلاية و تتكون هذه الغازات ساخنة جداً لسببين :- 1- الولاعة تنتج حرارة زائدة عن المطلوب لحمولة الغلاية . و هذا يعنى أن الولاعة و أليات ضبطها تحتاج إلى صيانة و أعادة معايرة كل من ( الهواء – الوقود) 2- أسطح نقل الحرارة داخل الغلاية لا تعمل بشكل صحيح و يتمثل هذا فى مواسير اللهب و هذا يعنى أنها ملوثة و تحتاج إلى تنظيف .

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 473 مشاهدة
نشرت فى 26 أكتوبر 2014 بواسطة abastaher

المواد الكيماوية المستخدمة فى معالجة مياه الغلايات

المواد المختلفة المؤثرة في نظام البخار :
قيم الأس الهيدروجينى و أيونات الهيدروجين :
عادة تساعد القيم المنخفضة من الأس الهيدروجينى على عملية التآكل خاصة فى الحديد العادي حيث يؤدى هذا التآكل إلى حدوث الصدأ أو التأثير في سمك الجدران و ذلك تبعا للقاعدة أن النقر يتوزع بانتظام على الأسطح الداخلية عادة يزيد التآكل مع زيادة درجة الحرارة.
النيتروجين و الأكسجين :
بوجه عام فان النيتروجين لا يؤدى إلى اهلاكات على الرغم من أن وجوده في البخار يمكن أن يؤدى إلى تكون جيوب هوائية في الأنواع المختلفة لأجهزة التسخين حيث تؤثر على انتقال الحرارة .
يعتبر الأكسجين المذاب العامل الأساسي لصدأ الحديدي حيث تظهر المخاطر عند درجات الحرارة الأعلى من 60 إلي 90 درجه مئوية الناتجة من التآكل بالأكسجين و هي عملية النقر في الأسطح الحديدية و الملامسه للمياه . هذا النقر يتخلل بسرعة و يصبح عميقاً و يمكن أن يخترق حائط الأنبوب أو التنك في فتره زمنيه صغيره جداً .
غالباً بتغطي النقر بكرات صغيره مشكله من ناتج التآكل المغناطيسي الأسود و يمكن أن تحيط مساحه كبيره
و يؤدي محتوي الأكسجين الأقل .
الحامض الكربوني و البيكربونات : Carbonic acid & bicarbonate
يتكون الحامض الكربوني من تفاعل المياه مع ثاني أكسيد الكربون المذاب في الماء
CO2 + H2O = H2CO3
يتحلل الحامض الكربوني إلي أيونات الهيدروجين و التي تؤدى انخفاض قيمة PH في المياه و هذا الهبوط يكون نتيجة :
انخفاض محتوي الحامض الكربوني الحر
زيادة البيكربونات في المحلول
عند تسخين المياه المحتوية علي البيكربونات إلي درجة الغليان يتحرر ثاني أكسيد الكربون و تتحلل البيكربونات إلي كربونات و تزيد قيمة PH في المياه
2 HCO3 = CO3-2 + CO2 + H2O
عند ارتفاع درجة حرارة
مياه الغلاية يحدث تحلل أكثر للكربونات و ثاني أكسيد الكربون
CO3-2 + H2O = 2 OH- + CO2
ثاني أكسيد الكربون المنقسم داخل الغلاية يتصاعد مع البخار و الجزء الأكبر منه يذوب في المتكاثف عندئذ تؤدي الكميات الصغيرة من الحامض الكربوني إلي خفض قيمة PH نسبياً و التي بدورها تعمل علي تآكل مواسير الغلاية
القلويـــــــــــه : ALKALI
عند انفصال ثاني أكسيد الكربون من
مياه التغذية أو مياه الغلاية بفعل التسخين تزيد قيمة PH و هذا يقلل التآكل في الغلاية و في نظام مياه التغذية و من المفضل اذا لم تحتوي مياه التعويض علي البيكربونات الكافية لتشكيل القلوية في الغلاية يجب أن تجهز مضيفات قلوية لمياه التغذية .
من جهة أخري يجب أل تزيد القلوية في
مياه الغلاية لأنها تؤدي إلي زيادة الرغوية و الفوران في الغلاية
يمكن بسهوله تحديد شدة القلوية في المياه و ذلك بمعرفة قيمة PH
الصوديوم و البوتاسيوم و الكلوريد و الكبريتات و النترات : sodium , potassium
chloride , sulphate & nitrate
PH تكون جميع هذه الأيونات من النوع القوي و تشكل أملاح طبيعية و لا تؤثر في قيمة عموماً تشترك في أنها تزيد من تكوين الأملاح في
مياه الغلاية و بالتالي تزيد من درجة التوصيل و اذا ترسبت علي جدران مواسير الغلاية أدت إلي ضعف كفاءة انتقال الحرارة و تسببت في رفع الضغط مما يؤدي إلي مخاطر كثيرة و يجب ألا تتعدي القيم القياسية المحددة المسموح بها و في بعض الحالات يمكن أن تؤدي القيم العالية للكلوريد إلي زيادة التآكل في النظام
 الأمونيا : ammonia:
نادراً ما توجد كميه كافيه من الآمونيا في المياه الخام و لكن غالباً ما تضاف حيث أنها تزيد من قيمة PH
في المتكاثف و يمكن أن توقف حالة التآكل في الحديد . و تذيب الآمونيا أكسيد النحاس و الذي يتكون عند تفاعل الهواء مع النحاس عموماً فإن طبقة الأكسيد تحمي النحاس من استمرار الأكسدة و لكن تستمر عملية التآكل في حالة وجود كلاً من الآمونيا و الأكسجين معاً
ثاني أكسيد السيلكون و حامض السيليكات : ( silicon dioxide & silicic acid )
يمتص ثاني أكسيد السليكون ( SIO2 ) كميات مختلفة من المياه مؤديه إلي حدوث الحمضية
SIO2 + H2O = H2SIO3
و يتحلل الناتج إلي محلول قلوي و يتشكل أيونات السيليكات
H2SIO3 + OH- = HSIO3- + H2O
و يكون تأثير أيونات السيليكات ضعيف جداً كما أنه لا يمكن تواجدها في محلول حمضي و عل ذلك فإن المياه القلوية بالغلاية تحتوي علي حامض السيليكا و الذي من مكوناته أيونات السيليكات حيث لا تمثل أيونات السيليكات مصاعب أو مشاكل لمياه الغلاية و لا للغلاية نفسها و لكن في وجود العسر تشكل بعض أنواع المشاكل في غلاف الغلاية .
يعتمد ذوبان حمض السيليكا في البخار علي درجة الحرارة و الضغط و يعتمد تركيز حمض السيليكا في البخار علي تركيز حمض السيليكا و علي الحموضة في
مياه الغلاية .
للحصول علي بخار بدرجة جوده كافيه لتشغيل التربينه فإنه يتم الاسترشاد بقيم محتوي حمض السيليكا في
مياه الغلاية
تشكيلات العسر hardness formers
المواد الرئيسية التي تؤدي إلي عسر المياه هي الكالسيوم و الماغنسيوم في الغلاية تتشكل هذه
المواد علي غلاف الغلاية يحدث هذا بنفس طريقة ترسيب الصابون الجيري .
تتشكل طبقة الغلاية عند تكون العسر و في وجود ايونات معينه خاصة الكربونات و السيليكات مؤدية إلي تكون طبقه غير قابله للذوبان و بالتالي تحدث سخونة الأسطح

المواد العضوية الآخري humus & organic substances
تتعرض بعض عمليات معالجة المياه لمخاطر شديدة نتيجة وجود هذه المواد و عليه يجب التخلص منه و humus خاصة
و هي عبارة عن ماده سمراء تنشأ من تحلل المواد النباتية و الحيوانية و تشكل الجزء العضوي من التربة.
أما المواد العضوية الذائبة الأخرى كشوائب تدخل للغلاية بعد تحميلها للمتكاثف و تعتمد المخاطر علي مدي انفعالها مع الغلاية خلال عمليات التسخين حيث أنها أحياناً تسبب حموضة في مياه الغلاية مما يؤدي إلي الإسراع من عملية تآكل أنابيب الغلاية .
كما يؤدي وجود المنظفات الصناعية الحديثة بالمياه إلي مشاكل مثل حدوث ر غاوي بالغلاية مما يرفع الضغط و قد يتسبب في حدوث انفجار في الغلاية
الحديد و الماغنسيوم iron & magnissium
حيث يكون للحديد و الماغنسيوم رواسب في الغلاية و التي تسبب اضطرا بات و مشاكل في عمليات معالجة المياه أولاً ثم تؤثر في مكونات غلاف الغلاية
 الزيت oil :
عادة يدخل الزيت لمياه لنغذيه عن طريق المتكاثف الملوث .و دائما يحتوي البخار المتكاثف القادم من آلات البخار الترددي reciprocating steam machinery علي ملليجرامات قليلة من الزيت لكل لتر .
لا تسبب الكميات البسيطة جداً من الزيت أي انهيارات عند الضغط المنخفض و لكن تؤدي الكميات الكبيرة
( في حالة التسريب ) إلي مخاطر شديدة لأن الزيت يؤدي إلي سخونة الأسطح و يشكل طبقات عازله علي غلاف الغلاية يمكن أن يسبب ذلك مخاطر مكلفه في وقت قصير .
الطين و الرواسب الطينية sludge & clays:
يؤدي الطين و الرواسب الطينية في مياه الغلاية إلي تكون طبقات علي الجدران و بالتالي يؤثر علي عملية انتقال الحرارة كما أنه يشارك في حدوث الرغاوي في الغلاية
معالجة المياه الخام
تم علي عدة مراحل :
المعالجة الأولية : pretreatment
يجب إزالة المواد الموجودة بالمياه الخام raw water قبل تنظيفها بالمبادل الأيوني . هذه المواد هي :
مواد طينيه sludge
الحديد : و يتم ا:سدة الحديد باستخدام أكسجين الهواء الجوي .
المواد العضوية الناتجة عن تحلل المواد النباتية و الحيوانية و يتم التخلص منها عن طريق المرشحات الرملية
التبادل الأيوني لنزع الأملاح :ion exchange
يستخدم التبادل الأيوني في معالجة المياه للتخلص من الأملاح الآيونيه المذابة في المياه و هي أما كاتيونات cations موجبة الشحنة أو انيونات anions سالبة الشحنة و الحصول علي مياه عالية الجودة و ذلك لأن الغلاية ذات الضغط العالي تحتاج إلي مياه عالية الجودة .
نزع الغازات deaerion
توجد نظريتين لشرح نزع الغازات
قانون دالتون Dalton,s law
و التي تنص علي أن الضغط الكلي المبذول علي حوائط الوعاء يساوي مجموع الضغوط الجزيئيه لكل الغازات الموجودة بالوعاء و هذا يعني أنه اذا تواجدت عدة غازات بالوعاء مثل النتروجين و الأكسجين و البخار فإن الضغط داخل حاوية نزع الغازات = مجموع ضغط كل غاز موجود بها
قانون هنري Henry,s alw
و الذي ينص علي أن كمية الغازات المذابة في المحلول تتناسب مباشرة مع الضغط الجزئي لهذا الغاز في الجو المحيط أعلي المذيب .
في نازع الغازات يكون المذيب هو المياه و تكون أغلب الغازات المذابة عبارة عن نتروجين و أكسجين
يقترح قانون هنرىتقليل كمية الغازات المذابة في المياه عن طريق تقليل ضغط الغازات الموجودة بالمياه المحيطة بنازع الغازات أي بتقليل الضغوط الجزيئيه .
فكرة عمل نازع الغازات :
يمكن ببساطه توضيح عمل نازع الغازات بأنه عند تسخين المياه إلي درجة حرارة الغليان يتصاعد الأكسجين مع البخار .
تسخن المياه ثم تكسر إلي رذاذ صغير فعند دراسة قطره صغيره من مياه هذا الرذاذ يكون الضغط الخارجي الجزيئ لهذه القطرة نتيجة الأكسجين صغير جداً عندئذ أي أكسجين مذاب يهرب إلي البخار المتدفق خارجاً عن قطرة الرذاذ و يقذف إلي الخارج . يخفض نازع الغازات محتزي الأكسجين المذاب إلي أقل من 0.005PPM حيث أن وجود الأكسجين يعد العامل الرئيسي لعمليات التآكل
طلمبات كيميائيه chemical pumps
تحتاج معالجة المياه الداخلية إلي بعض الكيماويات تحقن إلي الغلاية تحت ضغط الغلاية و لإمكانية ذلك تستخدم مضخات حقن كيميائيه و هي عبارة عن طلمبات أزاح ه موجبه Positive displacement pump تحتوي علي دفه قابله للضبط و علي ذلك فأن كمية الكيماويات يجب التحكم فيها بعناية
ثلاثة طرق للتغلب علي حدوث التآكل هي :
زيادة قيمة الPH في المتكاثف
إضافة عناصر لتخلص من الأكسجين المتبقي
إضافة عناصر لمنع المياه من أحداث رطوبة للحديد و بالتالي التغلب علي التآكل
تحلل الأمونبا أكسيد النحاس بسهوله و الذي يتكون من تفاعل الأكسجين مع النحاس و لذلك تسبب إضافة الأمونيا مخاطر لخطوط المتكاثف و المبدلات الحرارية المصنعة من النحاس اذا لم يتم لتخلص من الأكسجين
يزيد معادل الأميدات Neutralizing Amides في البخار من قيمة PH في المتكاثف و بالتالي يقل التآكل
الطاقة و تكلفة الوفر energy cost saving
يجب أن تكون نتيجة البرنامج الجيد و الكامل لمعالجة المياه الوصول إلي وفر في كلا من استهلاك الطاقة 7 البخار المتولد & تكلفة الصيانة و تكاليف الكيماويات المعالجة
يمكن للتوفيرات قصيرة الوقت short term في الطاقة و الكيماويات المعالجة أن نسترجع تكلفة تطبيق برنامج المعالجة عند معدل فعال بالأضافه إلي فوائد و مميزات علي المدى الطويل مثل مقاومة التآكل و تكون القشور في حالة الغلايات الكبيرة فان تقليل الصيانات و انخفاض تكلفة التشغيل يصبح جوهريا.
أ – منع التآكل و القشور : يؤدي تكون القشور في الغلاية إلي انخفاض كفاءتها
ب- تقليل التفوير : يجب تقليل التفوير بقدر الأمكان و يمكن حساب المفقودات نتيجة التفوير
ج – استعادة المتكاثف
د – التسخين المسبق لمياه التغذية
الإجراءات بعد معالجة مياه التغذية و مياه الغلاية و المتكاثف :
تضاف بعض المواد الكيميائية للحصول علي الخصائص المطلوبة في مياه التغذية و مياه الغلاية و المتكاثف للوصول للآتي :
زيادة الأس الهيدروجيني PH في مياه التغذية .
التخلص من العسر المتبقي
التخلص من الأكسجين المتبقي
منع التآكل في نظم المتكاثف
يتم إضافة الآتي لتحقيق ما سبق :
إضافة هيدرازيدالصوديوم و التي تزيد القلوية لمياه الغلاية
إضافة فوسفات ثلاثي الصوديوم : و هو محلول قلوي يكون رواسب غير قابله للذوبان مع مكونات العسر كقاعدة يتم المحافظة علي من 20 : 40 ملليجرام لكل لتر من P2O5 في مياه الغلاية في ضغط حتى 50 بار
يتم إضافة الفوسفات غلي مياه التغذية أو خط مياه التغذية بواسطة مضخة metric pump
في النظم الكبيرة حين يتم التخلص من هذه المخاطر بإضافة الفوسفات مباشرة إلي الغلاية
الهيدرازين : و الذي يخلص مياه التغذية من الأكسجين المتبقي و يزيد قلوية مياه الغلاية كذلك يزيد من قيمة PH في المتكاثف .
لفترات التوقف الطويلة يجب أن تجهز الغلاية بحوالي 100 مجم / لتر هيدرازين في مياه الغلاية
للحماية من حدوث تآكل
الأمونيا : و التي لا تزيد من قلوية مياه الغلاية و لكن تزيد قيمة PH في المتكاثف
حماية التآكل في نظام المتكاثف Prevent corrosion in condensate system
يحدث التآكل في نظام المتكاثف نتيجة تأثير ذوبان الحمض الكربوني و الذي له قيمة PH منخفضة في المتكاثف أيضاً الأكسجين المذاب له تأثير علي التآكل .
ينتج الحمض الكربوني من وجود البيكربونات (أو الحمض الكربوني الحر<sp

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 3881 مشاهدة
نشرت فى 4 إبريل 2014 بواسطة abastaher

<!--

<!--<!--<!--

*ماهو مفهوم المياه المغناطيسية. وما تفسيرها العلمي؟
ـ حسب مايفهمه الانسان فان الماء مكون من ذرات هيدروجين واوكسجين وجزيء الماء في غاية البساطة وجزيئاته ترتبط ببعضها بروابط هيدروجينية وقد تكون هذه الروابط ثنائية او متعددة فقد تصل الى عشرات الروابط وعند وضع جزئيات الماء داخل مجال مغناطيسي فان الروابط الهيدروجينية بين الجزيئات اما تتغير او تتفكك وهذا التفكك يعمل على امتصاص الطاقة ويقلل من مستوى اتحاد اجزاء الماء ويزيد من قابلية التحليل الكهربائي ويؤثر على تحلل البلورات وعلمياً لايوجد خلاف على ما اذا كانت المعالجة المغناطيسية فعاله ام لا في تحسين خواص الماء، والجدل الحقيقي والوحيد يتركز بشأن تسرح هذه الظاهرة او النظرية بطريقة صحيحة والتغيرات التي تحدث للمياه نفسها حينما توضع تحت مجالات مغناطيسية معينة فقد وجد ان الحقل المغناطيسي قدرة (1000 وحده) مغناطيسية تزيد سعة امتصاصه للايونات بالتبادل بحوال 5 ـ 8 بالمئة بينما قدرة (3000 وحده) تزيد هذه النسبة الى مايتراوح بين 19 الى 26 بالمئة وعلى ضوء هذه الخلفية انطلق العديد من العلماء في القول بانه من الممكن انتاج العديد من التاثيرات الايجابية فيما لو تم تعريض الماء لمجال مغناطيسي بشده معينة ومن ثم التأثير في خواص هذا الماء واعتباره ماءاً ممغنطاً او ماءاً مغناطيسياً كما هو معروف حالياً ومن هنا بدأت سلسلة الابحاث المتنوعة التي اختبرت الفوائد العلاجية والتصنيعية للماء الممغنط او المغناطيسي .
مكيف خواص الماء
كيف نحصل على المياه المغناطيسية تكنولوجيا؟
ـ عند مرور الماء خلال مجال مغناطيسي فان عددا من خواص الماء سوف تتغير كالتوصيل الكهربائي والشد السطحي اعتماداً على الشدة المغناطيسية المستعملة علاوة على زيادة نسبة الاوكسجين الذائب في الماء بنسبة 10 بالمئة فضلاً عن تغيير سرعة التفاعلات الكيميائية واذابة الاملاح وان عملية ممغنطة الماء بوساطة مكيف خواص الماء ذي التقنية المغناطيسية تعمل على استقطاب جزيئات الماء مع بعضها البعض كما تعمل على اعادة ترتيب جزيئات الماء ذات التوزيع العشوائي وتزيل الروائح غير المرغوبة في الماء كروائح الكبريت والكلور.
المياه الميتة وسائل الحياة
ما الفائدة المرجوة من المياه الممغنطة؟
ـ تكمن الفائدة من مغنطة الماء الذي نشربه او الذي نستخدمه خلال يومنا العادي يومياً يعتبر فاقداً لكثير من خواصه بسبب عمليات التحلية او التلوث البيئي والذي يعرف كذلك (بالماء الميت) بسبب تعرضه اثناء عملية التحلية الى التكثيف وضغط الهواء العالي واضافة الكثير من المواد المعقمة التي تفقده الكثير من خواصه الحيوية لذلك فان عملية ممغنطة المياه تعمل على اعادة احيائه وتغذيته وللكثير من الخواص المفقودة اذ ان عملية الممغنطة تعيد تنظيم شحنات الماء بشكل صحيح في الوقت الذي يكون فيه شكل هذه الشحنات عشوائياً في الماء الحالي وعندما يمرر بالمجال المغناطيسي فان ايونات الهيدروجين والمعادن الثقيلة القابلة للذوبان سوف تشحن وهذه الشحنة تسبب فصلاً مؤقتاً لجزيئات الماء ثم تعيد تحسين طعم الماء وهناك الكثير من الفوائد منها يعمل الماء الممغنط على تقليل الحموضة وعسرة الهضم والصفراء (المادة التي يفرزها الكبد) وتساعد على تنظيم حركة الامعاء الطاردة لكل المواد السامة كما يوصف الماء الممغنط للاشخاص الذين يعانون من وجود الحصى في الادرار ويعمل الماء الممغنط على خفض ضغط الدم ومعالجته للاضطرابات العصبية ويساعد على ازالة الشحوم او المواد الدهنية المتجمعة في جدران الشرايين اضافة الى تنظيم الدورة الدموية ويعتبر فعالاً جداً لعلاج حالات الربو والبرد والتهاب الرئة والسعال وبعض انواع الحمى ويستخدم علاجاً خارجياً للاورام والام العين وبقع الاكزما وتتسبب الطاقة المغناطيسية الممتصة في تحفيز الاوعية الدموية وتمددها من ثم تزداد وتتحسن الدورة الدموية ما يؤدي الى زيادة تدفق الغذاء المتمثل في الطعام والاوكسجين الى كل الخلايا فتساعد على التخلص من السموم بشكل افضل واكثر كفاءة من ثم تعادل المحتوى الهيدروجيني لخلايا وانسجة الجسم فتساعد هذه البيئة المتوازنة على تحسين اداء وظائف الجسم ومن ثم يشفي الجسم نفسه بنفسه ومن فوائد المياه المغناطيسية زيادة قدرة هيموكلوبين الدم على امتصاص الجزيئات والاوكسجين مما يزيد من مستوى الطاقة في الجسم ويعمل هذا على تقليل نسبة الكوليسترول في الدم وازلته من على جدران الاوعية الدموية مما يؤدي الى تقليل ضغط الدم المرتفع الى المعدل المناسب كما تعمل المياه الممغنطة على تغير تحرك ايونات الكالسيوم بحيث يزداد في مناطق كسور العظام لتساعد على سرعة التآمها او تقلل في مناطق المفاصل لعلاج الالتهابات التي تصيبها كما تمكن علماء المغناطيسية الاميركان من ايجاد علاج لمرض (باركنسون) وهو من الامراض الشهيرة التي تصيب المفاصل وذلك من خلال تمرير تيارات كهرومغناطيسية خفيفة جداً على المريض فاكتشفوا ان الاصابة بهذا الداء تزول بنسبة 95 بالمائة مما يؤكد ان العلاج بالتقنيات المغناطيسية يسير بالاتجاه الصحيح كما ان هناك فوائد لاستخدام المعالجة المغناطيسية للماء ومنها توفير الماء نفسه وتزيل الصدأاضافة الى تقليل التكاليف والى الدور الذي تلعبه في تقليل الاخطار واستعمال المطهرات الكيمياوية الهايبوكلورات الصوديوم المستخدمة في معالجة ماء الاحواض كما ويقلل الماء الممغنط مدى التلوث في احواض السباحة وبالنسبة للبكتريا والطحالب فانها تحصل على غذائها عبر غشاء الخلية نفسه اذ تمتص كمية كبيرة من المياه خلاله فالماء الممغنط يعمل على انحلال ايونات النشأ الخلوي مما يؤدي الى دخوله وبكميات كبيرة بالتالي سوف تنفجر بسبب الانتفاخ ثم تموت هذه الخلايا وبالتالي يساعد ذلك على قتلها.

والمياه المفلترة:
المياه المفلترة بشكل كامل غير صالحة للشرب

ذلك لان الجسم البشري يحتاج إلى نسب معقولة من هذه

العناصر مثل الكالسيوم، والصوديوم، والبوتاسيوم،

والكروميوم، والزنك، والمجنسيوم، والمنجنيز،

والميليدنيم، والسيلينيوم.

والله اعلم

مقدمة عامة

تعاني كثير من دول العالم ومنها دول وطننا العربي من قله مياه الانهر ( المياه العذبه)

لذلك تلجا الى تحليه المياه المالحه التي تكون متوفره من مياه البحار و والمياه الجوفيه

وبالحقيقه هناك عده تقنيات لتحليه الماء المالح منها:-

1-الترسيب الكيميائي باستخدام الجير المطفا CaO
2-التقطير
3-الديلزه الكهربائيه
4-المبادلات الايونيه
5-الاغشيه او ما تسمى بالتناضح العكسي
6- التبخير والتكثيف بواسطه اشعه الشمس
وهناك ظهرت طريقه ممتازه وهي طريقه التحليه باستخدام الفصل المغناطيسي
تعطي هذه الطريق كفاءه ازاله تصل الى 99% واكثر
ملخص هذه الطريقه ذلك ان سبب الملوحه بالماء وجود ايونات موجبه واخرى سالبه لكن هذه الايونات لاتنجذب نحو المغناطيس لذلك فكر العلماء بوسط مادي تنجذب اليه الايونات السالبه والموجبة وينجذب هذا الوسط الى المغانطيس وكانت هذه الماده تدعى الفرايت Fe3O4 وهي مسحوق يرمى في المياه المراد تحليتها فتنجذب اليها الايونات السالبه والموجبه وبامرار مجال مغناطيسي يتم تنقيه الماء
عُرفت الديلزة الكهربائية تجارياً منذ الستينات ، أي عشر سنوات قبل التناضح العكسي . أسلوب تكلفة فعال لتحلية مياه الآبار المالحة وفسح المجال للاهتمام في هذا الشأن .
وتعتمد تقنية الديلزة الكهربائية على الأسس العامة التالية .
وتتكون وحدة الديلزة الكهربائية من عدة مئات من أزواج الخلايا مربوطة مع بعضها البعض بأقطاب كهربائية تسمى مجمع الأغشية . وتمر مياه التغذية متحاذية في آن واحد عبر ممرات من خلال الخلايا لتوفير انسياب المياه المنتجة المحلاة كما يمر الماء المركز من المجمع .
واستناداً على تصميم النظام فإنه يمكن إضافة المواد الكيمائية في المجمع لتخفيف الجهد الكهربائي ومنع تكوين القشور .
وتتكون وحدة الديلزة الكهربائية من العناصر الأساسية التالية .
يجب معالجة مياه التغذية منذ البداية لمنع المواد التي تعرق الأغشية أو تسد القنوات الضيقة في الخلايا من الدخول إلى مجمع الأغشية . ويتم تدوير مياه التغذية من خلال المجمع بواسطة مضخة ذات ضغط ضئيل للتغلب على مقاومة المياه أثناء عبورها للممرات الضيقة . وغالباً ما يركب مقوم لتحويل التيار المتذبذب إلى تيار مباشر يتم تزويده للأقطاب من خارج مجمعات الأغشية .
وتشمل المعالجة النهائية ( الأخيرة) تثبيت الماء وتجهيزه للتوزيع ، والتي ربما تتضمن إزالة الغازات مثل سلفايد الهيدروجين أو تعديل درجة القلوية .
زمزمَ بحَسَب نية الشارب له ، فإن شربه للشبع به أشبعه الله ، وإن شربه للاستشفاء به شفاه الله، وإن شربه مستعيذًا بالله أعاذه الله، وهكذا باستحضار نيات صالحة عند شربه ليحصل لأصحابها ما ينوونه بفضل الله عزَّ وجلَّ الذي يؤتيه من يشاء، والله ذو الفضل العظيم . صدق رسولنا الكريم هذا دليل على أن خاصية ماء زمزم يمتلك خاصية المغنطة هذه. فهو بالفعل شفاء للناس وقال صَلَّى اللهُ عليه وآله وسَلَّم: « خَيْرُ مَاءٍ عَلى وَجْهِ الأَرْضِ مَاءُ زَمْزَمَ ، فِيهِ طَعَامٌ مِنَ الطُّعْمِ ، وَشِفَاءٌ مِنَ السُّقْمِ

ما هو الماء الممغنط

و ما هي فائدة استخدام الماء

الممغنط ؟

كما هو معروف بأن الجسم البشري يتكون من ترليونات الخلايا...

والتي تكون لاحقا أنسجة الجسم المختلفة والدم.

هذه الخلايا تعمل بشكل دقيق ومحكم ...

ويعتمد نشاط هذه الخلايا أو خمولها على الطاقة المغناطيسية .

حيث أن كل خلية من خلايا الجسم هي عبارة عن مولد مغناطيسي صغير .

ويقوم الجسم بإرسال نبضات من الطاقة الكهرومغناطيسية من المخ عن طريق الجهاز العصبي للخلايا حتى تقوم بأداء وظائفها على حسب حاجة الجسم .

وهذه العمليات البيولوجية المعقدة تتم بسرعة متناهية .

تساعد الجسم حتى يعالج نفسه بنفسه دون أن يصل إلى مرحلة المرض .

بحيث أن شحنات الجسم تكون في حالة تعادل .

وهذا النوع من الاتزان البيولوجي الداخلي يطلق عليه أسم المغناطيس الحيوي .

الماء الممغنط هو الماء الذي يتم الحصول عليه بعد تمريره من خلال مجال مغناطيسي معين ... أو بوضع ذلك المغناطيس داخل هذا الماء أو بالقرب منه لفترة من الزمن ... فيؤدي ذلك إلى تغيير كثير من خواصه بسبب التعرض لتأثير تلك المجالات المغناطيسية .

* الفائدة من المغنطة تكمن في أن الماء الذي نشربه أو نستخدمه خلال يومنا العادي يعتبر فاقداً للكثير من خواصه بسبب عمليات التحلية و التلوث البيئي هذا النوع من الماء يطلق عليه العلماء أسم الماء الميت !

بسبب تعرض الماء أثناء عمليات التحلية إلى التكثيف و ضغط الهواء العالي و إضافة الكثير من المواد المعقمة التي تفقد الماء الكثير من الخواص الحيوية ... ولذلك فان عملية مغنطة الماء تعمل على إعادة إحياء و تقوية الكثير من الخواص المفقودة بتأثير التحلية و التلوث البيئي ، حيث أن عملية المغنطة تعيد تنظيم شحنات الماء بشكل صحيح في الوقت الذي يكون شكل هذه الشحنات عشوائيا في الماء المحلى وقبل البدء يجب الذكر إن العلاج بالمغناطيس لا يتطلب اعتقاد بمصداقيته عند المريض...لأنه يؤثر فيه بشكل تلقائي بدون استئذان من الجسم و يفعل فعله لكن بوقت طويل... ولكن في حال تم التوافق الجسدي الفكري فإنه بعون الله يشفي بسرعة أكثر بكثير في وقت قصير و استجابة ممتازة .

طريقة مغنطة الماء في المنزل ....

1- ضع إناء الماء فوق قطعة مغناطيس .

غلف المغناطيس بشمع طبيعي وضعه داخل الإناء وهذا إذا كان المغناطيس صناعي يتكون من مادة الحديد أما إذا كان من الحجر المغناطيسي الأسود فيكون أفضل ولا يحتاج إلى شمع عازل للصدأ كما يفضل إن يكون ذات قوه كبيرة فكلما ذادت قوه المغنطة كانت النتيجة أفضل وأسرع ( وللعلم قوه مغناطيس هارد الكمبيوتر التالف تعتبر من أقوى أنواع المغناطيس على الإطلاق بالرغم من صغر حجمه ) .

2- أو وضعه على أنبوب الماء البلاستك عدة قطع مغناطيسة متقابلتين

الفرز الغشائي الكهربائي (الديلزة):

1. أغلب الأملاح الذائبة في الماء متأينة إيجابيا (CATHODIC) أو سلبياً ( IONIC) .

2. هذه الأيونات تنجذب نحو القطب الكهربائي ( ELECTROD) حسبما تحمله من شحنة كهربائية ( ELETRIC CHARGE ) .

3. يمكن إنشاء أغشية تسمح انتقائياً بمرور الأيونات حسب شحنتها الكهربائية ( سالبة أو موجبة ) .

إن محتويات الأيونات الذائبة في المحلول الملحي مثل الصوديوم ( +) الكلور أيد (-) الكالسيوم (++) والكربونات (--) تظل منتشرة في الماء لتتولى معادلة شحناتها الخاصة . وعند توصيل الأقطاب الكهربائية إلى مصدر تيار خارجي ، مثل البطارية المتصلة بالماء ، فإن الأيونات تتجه نحو الشحنات المعاكسة لشحناتها والموجودة في المحلول ، وذلك ممن خلال التيار الكهربائي الساري في المحلول سعياً وراء التحييد ( NEUTRALIZATION ) . ولتتم تحلية المياه المالحة من خلال هذه الظواهر فإن الأغشية التي تسمح بمرور أيونات من نوع واحد فقط ( وليس النوعين ) توضع بين قطبين كهربائيين ، على أن يتم وضع هذه الأغشية بطريقة متعاقبة ،أي غشاء واحد لانتقاء الأيونات ذات الشحنة الموجبة السالبة ، مع ضع لوح فاصل بين كل غشاءين يسمح بانسياب الماء بينهما ويشكل أحد اللوحين الفاصلين قناة تحمل مياه التغذية والمياه المنتجة ، بينهما يشكل اللوح الفاصل الأخر قناة تحمل مياه الرجيع . وحيث أن الأقطاب الكهربائية مشحونة وتناسب مياه التغذية المالحة عبر اللوح الفاصل بزاوية مستقيمة على القطب ، فإن الأيونات تنجذب وتتجه القطب الإيجابي . وهذا يؤدي تركيز أملاح قناة الماء المنتج . وتمر الأيونات ذات الشحنة السالبة خلال الغشاء الانتقائي لها ولكنها لا تستطيع أن تمر خلال الغشاء الخاص بالأيونات الموجبة والذي يقفل خطها وتبقي للأيونات السالبة في الماء المالح ( الرجيع ) . وبالمثل فإن الأيونات الموجبة تحت تأثير القطب السلبي تتحرك في الاتجاه المعاكس من خلال الغشاء المنتقي للأيونات الموجبة إلى القناة ذات الماء المركز في الجانب الآخر ، وهنا يتم اصطياد الأيونات الموجبة حيث أن الغشاء التالي ينتقي الأيونات السالبة ويمنع أي تحرك نحو القطب . وبهذا الأسلوب يتم إيجاد محلولين أحدهما مُركز والآخر قليل التركيز بين الغشاءين المتعاقبين المتجاورين. وهذان الفراغان المحتويان من قبل الغشاءين ( واحد للأيونات السالبة ولآخر للموجبة ) يسميان خلية . ويتكون زوج الخلية من خليتين حيث يهاجر من إحداهما الأيونات ( الخلية المخففة للمياه المنتجة ) وفي الأخرى تتركز الأيونات ( الخلية المركزة لمياه الرجيع ) .

1. مرفق المعالجة الأولية .

2. مجمع الأغشية .

3. مضخة تدوير ذات ضغط منخفض .

4. إمداد طاقة للتيار المباشر ( مقوم –RECTIFIER ) .

5. معالجة نهائية .

تقنية الديلزة الكهربائية المعكوسة

منذ مطلع السبعينات قدمت إحدى الشركات الأمريكية علمية الديلزة الكهربائية المعكوسة على أساس تجاري . وتقوم وحدة الديلزة الكهربائية المعكوسة عموماً على الأسس ذاتها التي تقوم عليها وحدة الديلزة الكهربائية ، غير أن كلاً من قناتي الماء المنتج والماء المركز متطابقتان في التركيب الإنشائي ، وعلى فترات متعددة من الساعة الواحدة تنعكس قطبية الأقطاب كما ينعكس الانسياب آنياً بحيث تصبح القناة المنتجة هي قناة المياه المركزة وقناة المياه المركزة هي قناة المياه المنتجة ، والمنتجة هي المعاكس عبر مجمع الأغشية وبمجرد انعكاس القطبية والانسياب فإن كمية وافية من المياه المنتجة تنصرف حتى يتم غسيل خطوط مجمع الأغشية ويتم الحصول على نوعية المياه المرغوبة . وتستغرق عملية الغسيل هذه ما بين 1-2 دقيقة ثم تستأنف عملية إنتاج المياه . ويفيد انعكاس العملية في تحريك وغسيل القشور والمخلفات الأخرى في الخلايا قبل تراكمها وتسببها لبعض المعضلات ( الانسداد مثلا ) . والغسيل يسمح للوحدة بالتشغيل بقليل من المعالجة الأولية ويقلل اتساخ الأغشية .

ما هي الخواص التي تتغير في الماء بعد مغنطته؟

و كيف يمكن التأكد من ذلك ؟

و هل هنالك فرق نشعر به عند شربنا للماء الممغنط ؟

* هنالك أكثر من 14 خاصية تتغير في الماء

بعد مروره من خلال المجال المغناطيسي و منها : خاصية التوصيل الكهربائي ... زيادة نسبة

الأوكسجين المذاب في الماء ... زيادة القدرة على تذويب الأملاح و الأحماض , التبلور ، التوتر

السطحي ، التغيير في سرعة التفاعلات الكيميائية , خاصية التبخر, قياس العزل الكهربائي , زيادة النفوذية ... والرائحة وهذه أسهل وسيلة وهى انك تشم رائحة الأوكسجين الذائد .

* توجد الآن أجهزة متطورة تستطيع قياس قوة المغناطيسية للسوائل بما فيها الماء . و تستطيع هذه الأجهزة لتصوير شكل الماء بعد مغنطته بواسطة

التصوير الكهربائي عالي الجهد

"High voltage Photography".

و تستطيع هذه الصور أن تظهر الفرق الواضح في شكل الماء و السوائل قبل و بعد مغنطتها.

ولكننا لسنا يصددها ,,,, لأننا سنمغنط مياهنا بأيدينا ,,,, فلنكتشف الفرق بأنفسنا .....

** ما نشعر به من فرق عند مغنطة الماء هو أن معظم الناس يشعرون بأن الماء صار أخف طعما

كما يمكن عمل التجربتين التاليتين للتأكد من الفرق الواضح:



تجربة ملح الطعام

1. قم بصب ماء عادي (غير ممغنط) في كوب صغير



2. و من نفس المصدر قم بمغنطة نفس الكمية من الماء



3. قم بصب كمية متساوية من ملح الطعام في نفس الوقت في الكوبين و بنفس السرعة

نلاحظ التالي:

أ‌. شكل ترسب ملح الطعام في قعر الكوب الممغنط يختلف عن شكل ترسبه في كوب الماء

العادي.

ب. إذا قمت بصب كميات إضافية من ملح الطعام في الكوبيين تلاحظ أن الماء الممغنط لديه

القدرة على تذويب كميات أكبر من ملح الطعام بمقارنة الماء العادي

ج. تجربة العصير القوي المذاق (البيبسي كولا): اذا قمت بشرب أي عصير ممغنط أولا ثم بعد

ذلك قمت بشرب عصير غير ممغنط تلاحظ أن هنالك فرق واضح في الطعم.

يظل الماء محتفظا بقوته المغناطيسية لفترة 12 ساعة ثم يبدأ في التناقص التدريجي البطيء

. وإن كانت هنالك بعض الخواص في الماء تظل لفترة طويلة فيه دون تغيير يذكر .... تمتد

لأيام و حتى لأشهر بعد مرور الماء من خلال المجال المغناطيسي .

ماء زمزم يمتلك خواصا مغناطيسية

يمتلك ماء زمزم خواصاً مغناطيسية عاليه ومناسبة تماما لأجسامنا ... و يعزى ذلك إلى أن بئر زمزم يقع في مدينة مكة المكرمة و التي تقع ضمن جبال مركز الأرض فتتواجد طبقات من الرواسب المغناطيسية تعمل على مغنطة مجرى المياه التي تمر ببئر زمزم ... ويتأثر ماء زمزم بهذه الظاهرة المغناطيسية الموجودة في منطقة مكة ... مما يجعلها تكتسب القوة المغناطيسية بتأثير المكان الذي توجد فيه ( هذا ما يطلق عليه العلماء ذاكرة الماء ، و التي تجرى حولها الآن الكثير من الأبحاث الفريدة من نوعها في الآونة الأخيرة ) . وحديث الرسول محمد صل الله عليه واله وسلم يؤكد ذلك حيث قال صلى الله عليه واله وسلم ( ماء زمزم لما شربة له ) بركةِ ماءِ
والله اعلم www.abastaher.com

معالجة مياة بدون تكاليف ؟
إذا كنت تبحث عن طريق سريع وسهل وآمن لمعالجة مشاكل الماء فى مزرعتك
" سواء كان الماء قليل أو به نسبة ملوحة عالية "
جهاز نفرتارى لمعالجة الماء

جهاز نفرتارى لمعالجة المياه

مكونات ذات مجال مغناطيسي قوي ، رتبت بترتيب خاص مع الاستعانه بعلوم البيوجيومترى والتذبذب المغناطيسى، لتنشئ مجال مغناطيسى يجعل الماء يتذبذب بسرعة وهو يمر من خلال مقاطع متعدّدة تخلق حقل مغناطيسي قوى ناعم ، يعيد ترتيب جزيئات الماء ،
ليصبح عندنا فى النهاية "ماء ناعم طبيعي مملوء بقوة الحياة والطاقة "
بمجرد مرور الماء من خلال نظام نفرتارى المغناطيسي فانه سيمتلك طاقة اكبر قياسا الى طاقته الأصلية نتيجة الزيادة الحاصلة في نشاط آيوناته وحركتها الواسعة وبالتالي ستكون له قابلية اكبر على فك ارتباط الآيونات الملتصقة به، وهذا يجعله اكثر ذوبانية، أي تزيد قدرته على اذابة الاملاح وتحللها وانتشارها.

معالجة أمراض المياه العادية والمالحة وإكسابها " طاقة فوق الخيال "
للزراعة: معالجة الملوحة بإذابة الأملاح وتحييد كلوريد الصوديوم من حول جذور النبات، واعطاء النباتات حيوية فائقة .
للمشروعات الانتاجية: "حيوانات ،دواجن ،أرانب ،أسماك" زيادة الحيوية والخصوبة والمناعة ومضاعفة الانتاج.
للصناعات :الغذائية،تعبئة المياه،الطوب والأسمنت ،الغلايات والطلمبات والتبريد، وخطوط المواسير،الرش المحورى.

جهاز يوفر فى كل شئ ويعيش للأبد بدون صيانةَ ، ويغطى ثمنه مما يوفره فى الشهر الأول
لمعالجة أمراض المياه العادية والمالحة وإكسابها " طاقة فوق الخيال "
" بديل للكيماويات وصحى وآمن وصديق للبيئة "
من الحديد القوى يتم تركيبه وربطة مع خط المياه ويمكن دفنه فى باطن الأرض، فيصبح مؤمن ضد السرقة والعوامل الجوية
متوفر بجميع المقاسات من 1\2 بوصة الى 8 بوصة

قدمت دراسة معالجة المياه بالمغناطيس والتأثيرات البيولوجية الحادثة
كأطروحة ماجستير فى جامعة عين شمس ، ولأكاديمية البحث العلمى للحصول على براءة اختراع

في مجال الزراعة

إذابة الكتل الملحية غير الذائبة التي تعوق نفاذية الماء خلال مسامات التربة وأنسجة النبات
توفير كمية كبيرة من المياه قد تصل إلى 30% من الماء المفقود بواسطة التبخر
زيادة معدل حركة غسل الأملاح من التربة وانخفاض واضح في تركيز الحديد والكالسيوم والمغنسيوم والكلورايد في التربة.
زيادة مستوى الأكسجين فى الجو المحيط بالأرض

تفقد المياه رائحة الكبريت ، أما الغازات الضارة مثل الكلور فتتم إزالتها تماماً
يصعق الماء المُعالج النيماتودا والميكروبات حول جذور النبات
فى تجربة على شجرة برتقال تم ريها بمياه ممغنطة نمت بشكل أكبر وثمار أقل ولكن كل ثمرة كانت مليئة بالعصير وتزن الواحدة 20 أوقية في المتوسط وفسر أحد العلماء ذلك بأنه كلما قل توتر سطح الماء الممغنط فإن المياه تتخلل جدران الخلايا وهذا يؤدي إلى سرعة انقسام الخلايا في مناطق النمو بالكائن الحي، مما يؤدي إلى زيادة النمو الخضري وقلة القطاع المسؤول عن الزهور والثمار.
زيادة نمو الجذور نتيجة زيادة امتصاص العناصر الغذائيةالذائبة.

مع نظام نفرتارى المغناطيسي يجب أن نقلل كمية السماد المستخدم حتى 30% ، والغريب أن قدرة التربة على إمداد النبات بالعناصر السمادية تزيد ، ويترتب على ذلك زيادة فاعلية الأسمدة المضافة ، مما يعنى تكاليف اقل وسماد اقل ووقت أقل لامتصاص السماد
زيادة في نسبة إنبات البذور في حالة مغنطتها ، بل وتوفير في كمية البذور اللازمة للبذر بحوالي 50%.

مع نظام نفرتارى المغناطيسي تقل نسبة اصابة النبات بالامراض بنسبة 60%. حسب نوع النبات بالإضافة إلى تحسين نوعية الثمار.
تسمح باستخدام المياه الغنية بالحديد في الري بدون الحاجة إلى تنظيف خطوط التنقيط يومياً وأتاح ذلك إمكانية استخدام نظم الري المتطور في الواحات والاراضى الصحراوية.
في مزارع الطيور والحيوانات والمزارع السمكية

الدجاج الذى شرب بصفة مستمرة ماء مغناطيسي - حدث عنده تحسن فى تكوين الجهاز العظمي . - زيادة فى الوزن بنسبة 5-7% - نقص فى الوفيات بمعدل 2:3 مرات - زيادة فى جودة البيض وجودة اللحم بما لا يقل عن 10%
حيوانات المزارع التى تشرب بصفة مستمرة ماء مغناطيسى - تحلب اللبن بطريقة أسهل وأيسر فالضرع كان أكثر استرخاء . - إنتاج الحليب زاد تقريبا بنسبة 10 % - زياة نسبة الدسم فى الحليب بحوالى 0,13 - 0,15% (نسبة الدسم القياسية فى الحليب 3,2 %) - نقصت بشدة كمية البكتيريا الموجودة في الحليب . - تراكم البروتين، فقد حدثت زيادة في وزن العجول بحدود 35 % ، وفي الحملان بحدود 12 % ، وفي الأرانب حوالى 10 % - تحسين نوعية طعم اللحم - انخفاض معدل الاصابة بالمرض والوفيات.

حيوانات المزارع ، حقق معها الماء الممغنط نتائج مذهلة، وبعضها كان صعب التصديق ، ففي مجموعتين كل مجموعة مكونة من 24 خنزير ، المجموعة الأولى تأكل وتشرب بشكل طبيعي ، والثانية تأكل نفس الطعام ولكن تشرب مياه ممغنطة ، وجد أن المجموعة الثانية استهلكت مياه تصل إلى ضعف المستهلك في المجموعة الأولى، وزادت معدلات نموهم بنسبة 12.5%.

في الأسماك: يحول الماء المعالج ماء الأحواض والبرك الاصطناعية اللازمة لتربية الأسماك الى ماء نشيط بيولوجيا ويؤثر إيجابيا على فتح شهية الأسماك وزيادة حركتها وبالتالى زيادة أوزانها وارتفاع خصوبتها.
فى الصناعة

يمكن استخدام المعالج الحيوى المغناطيسى فى الانشاءات وصناعة الطوب حيث أن عجن الطين أو الاسمنت بالمياه الممغنطة زاد قوة تماسكة بمعدل 15 إلى 40%، رغم تقليل نسبة الأسمنت الى الرمل.
في مجال المنظفات الصناعية والغسيل والصباغة والمذيبات: نجحت المياه المعالجة مغناطيسيا فى مضاعفة قوة التنظيف رغم استخدام نصف كمية مواد التنظيف، يفسر هذا أن الماء المغناطيسي يجري وينساب على الأسطح بشكل أسرع، كما يتخلل الأقمشة بشكل أسهل.
فى عمليات غسيل المعادن من الأتربة ومخلفات المناجم، وعمليات تجميع وفصل المعادن عن طريق التعويم المركزي، تزيد نسبة فاعلية التعويم مما يزيد كفاءة الغسيل بنسبة 40% إلى 80%. السيطرة على تكون الطبقات القشرية والصدأ على سطح الأجهزة، والتقليل من الرواسب والأملاح المترسبة داخل المواسير فى أجهزة التبريد والغلايات والمبادلات الحرارية. زيادة فاعلية تبادل الأيونات عند إعادة تدوير واستخدام مياه الصرف الصحى والصرف الصناعى.

وهذه بعض المقالات العلمية عن الماء الممغنط بالإضافة غلى الصور
Scientific research into magnetic water treatment

We are often asked if there is a scientific basis to magnetic water conditioning, and if there is independent research backing it up. The answer is that yes, there is.....and it's here on the webpage. And we would assume that most would consider the likes of NASA and the US Department of Defense to be fairly credible! We haven't commissioned any research ourselves, other than inhouse trials in the early days. This sort of research costs hundreds of thousands of dollars. Magnetic water conditioners work! They've been around for a long time now. We sell hundreds of them every year. And we've been doing this long enough that we know when they will work, and when they will not.
In our opinion, the more important data comes from our many satisfied customers who, despite written money-back guarantees, never seem to consider returning them. They only ever call to request brochures or test-kits for friends and relatives, or to order another conditioner for a new bore. That's scientific enough for us.....but here's a bit of existing research anyway:

"Examination to Determine the Physical or Chemical Differences Between Untreated and Magnetically Treated Water" by Schmutzer, M.A., and Hull, G.W.
The UNITED STATES TESTING CENTER INC., performed a test to determine the effectiveness of magnetic water treatment in preventing boiler scale build-up. Upon subjection of the residual salts from both the treated and nontreated samples to x-ray distraction examination, a distinctive difference in the crystalline structure of the deposited residues was noted. The two samples were found to have the same chemical constituents but the x-ray distraction analysis indicates that the dominant crystal species in the untreated sample is calcium sulfate and calcium silicate, while in the treated sample the dominate species is a calcium carbonate and calcium sulfate (non corrosive elements). The samples are therefore physically different.

"Magnetic Treatment of Water" by Hibben, Stuart G.
The Advanced Research Agency of the Department of Defense sponsored research in magnetic treatment of water reporting that the fact generally agreed upon is that a magnetic field reduces the kinetics of crystallization processes and the freedom of movement of charged particles. This limitation of the motion of particles in the field results in an increase in the number of collisions and the formation of crystallization centers. Magnetic treatment is effective if the liquid is passed through the flux of a magnet having a sufficiently field and magnetic gradient, providing that the temperature of the liquid is not too high.

"Comparing Corrosion Rates of Steel Corrosion Inhibitors" by Kuivinen, David E., . Lewis Research Center, Cleveland.
NASA (The National Aeronautics and Space Administration), tested magnetically treated water against chemically treated water for corrosion rates of steel corrosion coupons placed in the two water systems. Reported results were excellent with corrosion rates of 1 to 50 mils per year using chemical inhibitors, with 4 mils per year considered to be acceptable, while corrosion rates of 0.0 mils per year were recorded for magnetic treatment of the water

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 8301 مشاهدة
نشرت فى 25 مارس 2014 بواسطة abastaher

<!--

<!--<!--<!--

مقدمة عن الغاز الطبيعي:

الغاز الطبيعي واحد من أفضل مصادر الطاقة، وهو من أنواع الوقود الأحفورية كالزيت والفحم، والذي يكون غالباً مصاحباً للنفط تشكل في باطن الأرض من بقايا النباتات والحيوانات والجزيئات الحية التي عاشت قبل ملايين السنين. ويتفق الجيولوجيين والكيميائيين على أن النفط ينشأ من النباتات وبقايا الحيوانات التي تتراكم في على طول قاع البحر / البحيرة  .
مع الرواسب التي تشكل الصخور الرسوبيةأن العمليات التي يتم فيها تحويل المواد العضوية إلى البترول ليست مفهومة لحد الآن. ويعتقد أن العوامل التي تسهم في ذلك هو العوامل البكتيرية ، إجهاد القص ، بالأضافة الى الضغط والحرارة والتقطير الطبيعي في أعماق كبيرة ومن الممكن وجود عوامل محفزة بالأضافة الى الوقت.

والغاز الطبيعي یوجد في الطبیعة إما مع مكامن البترول أو منفردا. لقد ازداد الطلب على الغاز الطبیعي بشكل كبیر في الفترة الأخیرة بسبب نظافته وتعدد استخداماته ، كما أن حرقھ بصورة صحیحة لا یؤدي إلى تلوث البیئة ، أي انه یحترق كاملا ولا یترك رمادا ، ولا یكون أول اوكسید الكاربون ، كما أن قیمته الحراریة حوالي (11000 - 12000) كیلو كالوري لكل كیلو غرام ، أي أنه أكبر بكثیر من القیم الحراریة لأنواع الوقود الاخرى مثل الخشب ( 4700–5100 ) كیلو كالوري لكل كیلو غرام ، الفحم الحجري (6000 -8000 ) كیلو كالوري لكل كغم ، والكیروسین ( 10000 ) كیلو كالوري لكل كغم ، اضافة الى ماسبق فأن اسعاره مستقرة نسبیا بالأضافة الى سھولة نقلة وتوزیعة بواسطة شبكة من الانابیب والى مسافات بعیدة.
لكن ھذا الوقود الغازي تترتب علیه مساوئ منھا صعوبة خزنه وتسربه من الاوعیة والانابیب الحاویة له والذي یؤدي إلى حوادث الانفجار والحرائق.

مقدمة عن الغاز الطبيعي:

الغاز الطبيعي واحد من أفضل مصادر الطاقة، وهو من أنواع الوقود الأحفورية كالزيت والفحم، والذي يكون غالباً مصاحباً للنفط تشكل في باطن الأرض من بقايا النباتات والحيوانات والجزيئات الحية التي عاشت قبل ملايين السنين.   ويتفق الجيولوجيين والكيميائيين على أن النفط ينشأ من النباتات وبقايا الحيوانات التي تتراكم في على طول قاع البحر / البحيرة  .
مع الرواسب التي تشكل الصخور الرسوبيةأن العمليات التي يتم فيها تحويل المواد العضوية إلى البترول ليست مفهومة لحد الآن. ويعتقد أن العوامل التي تسهم في ذلك هو العوامل البكتيرية ، إجهاد القص ، بالأضافة الى الضغط والحرارة والتقطير الطبيعي في أعماق كبيرة ومن الممكن وجود عوامل محفزة بالأضافة الى الوقت.

 عندما نتحدث عن الغاز الطبيعي فان وجود المیثان غیر الحیاتي یدحض الرأي القائل والسائد في جیولوجیا ألنفط من ان النفط والغاز الطبیعي في الارض ھو من اصل بایولوجي أو حیاتي. وعلى ھذا ایضا فان الكاربون الموجود في الھیدروكاربونات قد اشتق في الاصل من ثاني اوكسید الكاربون المتوفر في الجو وان الطاقة التي فصلت الكاربون عن الاوكسجین قد جاءت من ضوء الشمس بطریقة التحلیل الضوئي للنبات .ان اندثار قسم من ھذه المكونات العضویة قبل ان تصیبھا الاكسدة یمكن ان تكون مصدر للمواد الاولیة للنفط والغاز.
ولا مجال للشك بان ھذه العملیة قد ساھمت في تكوین القسم الاعظم من النفط الذي تم اكتشافه لحد الان . لقد بدا العمل بنظریة احتواء اعماق الارض على غیر الحیاتیة مع بدایة النظریات القائلة بان ھذه الھیدروكاربونات تكون الجزء الاعظم من الجزیئات العائمة الكاربونیة في النظام الشمسي .ویستدل على ان الكون یتالف في معظمه من الھیدروجین او ما یسمى بالكیمیاء الكونیة ان الارض وبقیة الكواكب في النظام الشمسي قد ترسبت وتكیفت منذ بدء الخلیقة بشكل غمامة مشبعة بالھیدروجین. كما ان معظم الكاربون الداخل في تكوین النیازك والذي یوفر الدلیل على التكوین الطبقي للكواكب یتألف من الھیدروكاربونات المتعددة تشبھ في بعض خواصھا الكیمیاویة قار النفط. ویعتقد ان ألأرض قد حصلت على الكثیر من الكاربون بشكل ھیدروكاربونات مماثلة. وان غلاف الارض او ما یسمى بجو الارض یحتفظ بمعظم ھذا الكاربون بشكل غاز المیثان .ویعتقد ان سبب ذلك یعود الى السنین الاولى في تكوین الارض وغلافھا .
وعن طریق عملیة التركیب الضوئي تم انتاج الاوكسجین الطلق وامتلاء الغلاف تدریجیا بما یحتویه الان من عنصر الاوكسجین الذي تتألف منه الان الھیدروكاربونات ،خاصة الوقود والطاقة الكیمیاویة لأن الاوكسجین ھو أحدى المكونات اللازمة لعملیة الاحتراق لھذا یتوفر في اي مكان من الغلاف الجوي.
لقد انطمرت الھیدروكاربونات بفعل الضغط العالي جدا والحرارة الملتھبة تحت الارض واخذت تطلق غاز المیثان كأحدى المكونات الاساسیة لھا. وینحو ھذا الغاز الذي یخرج من طبقات الارض مصاحبا مع غازات اخرى نحو ألارتفاع الى سطح الارض ویھاجر الى المناطق الرخوة في قشرة الارض تاركا الكتل الھائلة من الھیدروكاربونات
وراءه . وحینما تتصل تلك المناطق المشبعة بغاز المیثان بمنطقة الانفجار البركاني تتم اكسدتھا الى ثاني اوكسید الكاربون (الاوكسجین المتحد مع الماء او احدى عناصر التاكسد في الصخور ) قبل ان یدخل غلاف الارض.
ویدخل معظم الكاربون الموجود في غاز المیثان المھاجر لسطح الارض الى غلافھا اما بشكل غاز المیثان مباشرة اوبشكل متأكسد اي ثاني اوكسید الكاربون, ویتم ترشیح معظم ثاني اوكسید الكاربون في المحیطات وتتم ازالته بھذه الوسیلة . اما الصخور المؤلفة لقشرة الارض فانھا تبقى محتویة على كمیات ھائلة من الكاربون وبشكل مادة الكلس او كاربونات الكالسیوم .

ان ھذه الكمیات الھائلة الزائدة بأفراط من الكاربون یعتقد بانھا قد جاءت الى قشرة الارض من اعماقھا وبشكل غازات كاربونیة (اي غاز ثاني اوكسید الكاربون المتحد مع غاز المیثان( ولا یمكن الان التاكد على اجراء كل من الغازین بشكل منفصل ومن الاعتراضات التي تثار في بعض الاحیان حول وجود الھیدروكاربونات في باطن الارض انھا تتأكسد بفعل الضغط والحرارة الھائلة. الا ان مثل ھذه الاقاویل تفتقر الى سببین الاول ان الضغط الھائل في اي طبقة كانت تؤدي الى استقرار غاز المیثان ولا یؤدي الى عملیة الاكسدة . والثاني ھو ان توفر غاز الاوكسجین في الصخور البركانیة لا یعني انھ یؤكسد غاز المیثان حتى وان تكون له ھذه الخاصیة لان الصخور یجب ان تكون صخور مائیة . كما ان الغازات الطلیقة من فتحات الارض وقریبة من منطقة الأنفجار البركاني قد تتأكسد تماما وتأتي على البقیة من غاز الاوكسجین ویبقى غاز المیثان حرا طلیقا بكمیات كبیرة.
تحتوي الكثیر من الصخور الترسبیة على بقایا بایلوجیة او حیاتیة وأذا ما غمرت بالنفط غیر الحیاتي من الاسفل وتركت تتسرب به الالاف من السنین وتحت ضغوط متفاوتة ودرجات حرارة متغایرة یصبح النفط بالمادة البایلوجیة.
قد كتب الروفسور البریطاني سیر روبرت روبسون قائلا لایمكننا دحض نظریة ان النفط لا یؤلف في مكونات منتوجات عضویة متطورة ، كما ان الأقاویل حول اصل النفط تصلح في ھذا الخصوص ایضاً باضافات من منتوجات بایولوجي اخرى.
ورغم ان غاز المیثان یعتبر من الناحیة الكیمیاویة غازا غیر متفاعلا ، فانه یتبلمر اي یتحد الى مركب النفط الخام تحت ظروف ملائمة من الحرارة والضغط والفعل التحفزي (بضمنه الفعل الجرثومي ) .وعند حصول ھذه الحالة فان جریان غاز المیثان یزید وبشكل تدریجي وبطيء من المواد البایولوجیة ومكامنھا ویوسعھا الى احتیاطي نفطي ذو قیمة تجاریة . قد تكون ھذه العملیة غیر ناجحة ، وفي كل الاحوال فان الغاز یتسرب نحو سطح الارض ویستمر جریانه مع تعاقب الفترات الجیولوجیة ویعتبر اصل  الھایدروكاربونات المتوفرة بكمیات تجاریة في باطن الارض .
ان قابلیة الازدیاد الكیمیاوي المتراكم لھل مردود ایجابي حیث كلما ازدادت سعة المتراكم ارتفعت قابلیة الحصول على الغاز المتسرب الى السطح. ان ھذا التكوین البایولوجي یعطي السبب الى التساؤل حول بعض الحقول النفطیة ولماذا تكون واسعة عند مقارنتھا مع بقیة الحقول . ومن بین الالاف من الحقول النفطیة التجاریة تحتوي ٣٣ حقلا ( ٢٥ حقل منھا في الشرق الاوسط ) على نصف كمیات النفط الخام المكتشفة القابلة للاستخراج في العالم.
ولنبحث في موضوع تسرب غاز المیثان من باطن الارض .توجد الھایروكاربونات في القباب القشریة للارض وفي ألأحافیر لطبقات التكتونیة وحدودھا ویوجد المیثان بكمیات كبیرة في المیاه العائمة في باطن الھضاب الموجودة بین الطبقات.وعلى سبیل المثال تحتوي میاه البحر المیت الشدیدة الملوحة على غاز المیثان بنسبة تزید ١٠٠٠ مرة على ماتحتویه میاه البحر الاعتیادي. وفي المحیط الاطلسي او ما یسمى مرتفعات الاطلسي الشرقیة نجد نافورات الریشة تتناثر من قعر البحر على السواحل وتحتوي على كمیات ھائلة من غاز المیثان . اما في بحیرة( كیفو) في ساحل الافریقي الشرقي فأنھا تحتوي على ٥٠ ملیون طن من غاز المیثان المذاب في الماء ولا یعرف لھا اي اصل جرثومي معلوم . ونعتقد ان غاز المیثان في ھذه المیاه كلھا یتوفر ویتسرب من خلال التراكیب العمیقة للقشرة الارضیة.
ودلیل اخر على وجود ھذه الخواص وارتباطھا بالھیدروكاربونات الغیر حیاتیة ھو العلاقة بین مناطق النفط والغاز الرئیسیة في العالم والمناطق القدیمة والحدیثة التي تجري فیھا العملیات الزلزالیة . وغالبا ما تقع الحقول النفطیة بالقرب من التصدعات الجولوجیة النشطة او القدیمة كما توجد معظم الینابیع الصغیرة للنفط والغاز في المناطق الزلزالیة النشطة . واھم ھذه الانواع بالنسبة الى الغاز ھو ما یسمى البراكین الطینیة التي تعتبر بمثابة التلول تم بنآئھا نتیجة ألأنفجارات الغازیة العنیفة التي تحدث خلال فترات او بشكل متقطع ، ویتألف الغاز من ثاني اوكسید الكاربون في بعض الاحیان ویحتوي في الغالب على المیثان الخالص والصافي.
وتوجد البراكین الطینیة على وبالقرب من التصدعات الجیولوجیة وحدودھا . وفي المناطق ذات الحركات الزلزالیة النشطة یمكن حدوث ھزات ارضیة عنیفة خلال بضع ملایین من السنین ویعتقد البعض ان تصدع الصخور في ھذه المناطق یؤدي الى تسرب النفط والغاز في اوقات زمنیة قصیرة قیاسا على عمر الطبقة المحتویة علیھا . اما الحقیقة فأن الحقول النفطیة والغازیة لھا خواص مشابھة للمناطق المعرضة للزلزال . وھذا التشابه یدعونا الى الأعتقاد ان التصدعات العمیقة قد یتسرب منھا غاز المیثان وبشكل مستمر من اعماق الارض . وقد تؤدي ھذه الترسبات والھجرة المستمرة لغاز المیثان و الغازات الاخرى في التصدعات الجیولوجیة نحو السطح الى حصول الزلزال.
لایستطیع التكھن بحصول الزلزال بواسطة الآلآت فقط .وبعض الظواھر اصبحت معروفة من عصور غابرة . بحیث یدعونا ذلك للاعتقاد بان تلك الظواھر التي اصبحت شاھد عیان على وجود تسرب الغاز او غیره قد حصلت نتیجة للجریان المتزاید للغاز من خلال طبقات الارض . ومن بین الظواھر المكروسكوبیة ھو حصول اصوات انفجار خافت
لمنطقة غیر معروفة وفي التصرف الغریب للحیوانات في تلك المناطق والتبدل الشاذ في درجات الحرارة والفورات الفسفوریة وانواع اللھب الخارجة من الارض وكذلك اضطراب جریان المیاه داخل ألأبار الارتوازیة.
ویمكن القول ان ھذه الظواھر تحصل نتیجة لأنعزال الغاز من خلال مخارج مسامیة واسعة للصخورالمسطحة والتي تتعرض الى ضغط متزاید قبل حصول الزلزال كما تظھر ھذه ألأصوات والفورات وغیرھا من الظواھر في مناطق متباعدة في آن واحد. وتشیر ایضا الى وجود الغاز.

 الغاز الطبيعي عبارة عن خليط من المواد الهيدروكربونية، مع كمية بسيطة من مركبات غير عضوية والتي تمثل مكونات النفط عالیة التطایر. ومركب لا لون له ولا شكل ولا رائحة. وكان قبل اكتشاف طرق استخدامه يحرق في الهواء للتخلص منه. يوجد الغاز الطبيعي إلى جانب النفط في المكامن الواقعة على أعماق تتراوح ما بين كيلومتر واحد وكيلومترين تحت سطح الأرض، كما يوجد وحده في أعماق أكبر من ذلك، ان المكونات الرئیسیة للغاز الطبیعي في الاحوال الاعتیادیة ( من حیث الحرارة والضغط ) عند أستخراجه من البئر تشمل المیثان والایثان وكمیات من البروبان والبیوتان والھكسان أما بشكل غازات أو ابخرة أما الشوائب الغازیة التي قد یحتویھا الغاز الطبیعي فھي النتروجین وثاني أوكسید الكاربون وكبریتید الھیدروجین واثار من الھیدروجین والاوكسجین وأوا اوكسید الكاربون وثاني اوكسید الكبریت

 ومن أهم ميزات الغاز الطبيعي أنه وقود فاعل ومجدٍ اقتصادياً وأقل إضراراً بالبيئة. ويعد الغاز الطبيعي أسرع مصادر الطاقة الأولية نمواً في العالم خلال العقود الثلاثة الأخيرة، وذلك بسبب خصائصه ومزاياه.
وقد نمت صناعة الغاز الطبيعي في المملكة العربية السعودية نمواً كبيراً، وزاد الطلب عليها باطراد بدءاً من العام 1975م. وقد أصبحت المملكة العربية السعودية تحتل المركز الرابع في احتياطيات الغاز الطبيعي على مستوى العالم (بعد روسيا وإيران وقطر) باحتياطات مؤكدة تبلغ 235 تريليون قدم مكعب، بينما تعد اليوم من الدول العشر الأولى في إنتاجه. ومع انضمام مشروع تطوير الغاز الطبيعي والزيت في حرض إلى شبكة الغاز الرئيسية للبلاد تكون طاقة المعالجة العامة للمملكة العربية السعودية قد وصلت إلى حدود 9 مليارات قدم قد مكعب قياسي في اليوم.

استخداماته الأساسية :
تدعم صناعة الغاز الطبيعي اليوم عدداً من القطاعات الأساسية مثل البتروكيماويات، صناعة الصلب والأسمنت، توليد الطاقة، وتحلية المياه
ويتم توزيع غاز البيع على هذه القطاعات كالتالي:
 -  40%
من هذا الاستهلاك يولّد الكهرباء.
 -  21%
يستهلك في صنع البتروكيماويات، وقوداً ولقيماً لإنتاج اللدائن (البلاستيك) والمواد الكيميائية الصناعية التي تعد للتصدير.
 -  17%
يستهلك كوقود لمحطات تحلية مياه البحر التي تعد أحد أهم مصادر مياه الشرب في البلاد، حيث تعد المملكة العربية السعودية واحدة من أكبر الدول في استهلاك الفرد لمياه 
     
الشرب في العالم.
 - 14%
يستهلك لصناعة البترول، لا سيما في دعم شبكة الغاز الرئيسية ورفع طاقتها.
 -  8%
يستهلك لصناعات أخرى مثل الصلب والأسمنت.
 
وتسهم هذه القطاعات إسهاماً أساسياً في الاقتصاد السعودي، فهي تنتج دفقاً نقدياً يبلغ 25 مليار دولار أمريكي، وتساوي 15% من إجمالي الناتج المحلي في الاقتصاد السعودي، وتتيح 35 ألف فرصة عمل مباشرة و150 ألف فرصة عمل لها علاقة بالصناعة.

المفردات والمصطلحات الأساسية في صناعة الغاز الطبيعي

 
الغاز المصاحب: هو غاز يصاحب إنتاج الزيت الخام في المكامن وينتج مع الزيت الخام، وتتوقف معدلات إنتاجه على معدلات إنتاج الزيت الخام.
 
الغاز غير المصاحب؛ هو غاز ينتج من آبار الغاز العميقة بصورة مستقلة عن إنتاج الزيت الخام.
 
الغاز الحامض والغاز الحلو؛ هو مجموعة الغازات السامة المؤلفة من كبريتيد الهيدروجين وثاني أكسيد الكربون الموجودة في الغاز المصاحب وغير المصاحب وتتم إزالتها
    
من الغاز طريقة تسمى التحلية. أما الغاز الحلو فهو الذي لا يحتوي على مادة كبريتيد الهيدروجين السامة.
   
وبشكل عام فأن الغاز الحامضي هو الغاز الذي یحوي على الغازات الحامضیة مثل ثاني أوكسيد الكاربون أو كبريتيد الهيدروجين أما الغاز الحلو فهو الغاز الخالي من الغازات الحامضية.

 
الميثان؛ هو المكون الأخف والأوفر في الغاز الطبيعي ويستخدم إما كلقيم بتروكيماوي أو غاز وقود.
 
الإيثان؛ المكون الثاني في الغاز الطبيعي، ويستخدم بصورة أساسية كلقيم بتروكيماوي وأحياناً كوقود.
 
غاز البيع؛ هو غاز الوقود المستخدم في المملكة العربية السعودية وهو عبارة عن خليط من الميثان والإيثان، ويتم توزيعه إلى العملاء بواسطة شبكة غاز البيع.
 
البروبان؛ المكون الثالث في الغاز الطبيعي، ويوجد بصورة طبيعية كغاز ولكن يمكن تحويله إلى سائل بالضغط والتبريد. ويستخدم البروبان داخل المملكة العربية السعودية
          
كلقيم بتروكيماوي. ويتم تبريد الفائض منه وتصديره إلى الخارج كسائل.
 
البيوتان؛ المكون الرابع في الغاز الطبيعي، ويوجد بصورة طبيعية كغاز يمكن تحويله إلى سائل بالضغط والتبريد. ويستخدم معظم غاز البوتان داخل المملكة العربية
           
السعودية كلقيم بتروكيماوي. ويتم تبريد الفائض منه وتصديره إلى الخارج كسائل.
 
غاز البترول السائل؛ هو خليط من البروبان والبوتان ويتم ضغطه وتسييله ثم تخزينه في اسطوانات غاز، ويستخدم بصورة أساسية في طبخ الطعام.
 
الغاز الرطب Wet Gas  وهو الغاز الذي یحوي على كمیة عالیة نسبیا من البروبان والبیوتان والبنتان وسوائل ھیدروكاربونیة أخرى الى جانب المیثان والایثان.
 
الغاز الجاف Dry gas الغاز الذي یتكون من المیثان والایثان بصورة رئیسیة ولا یحوي (اویحوي على كمیات قلیلة ) من الغازات الھیدروكاربونیة الاخرى.
 
الغاز الطبيعي المسال Liquefied natural gas  ویتكون من المیثان والایثان وبالامكان تسییله بأستعمال الضغط والتبرید معا .
 
غاز البترول المسال  خلیط من البروبان والبیوتان بصورة رئیسیة وبالأمكان تسییله بأستعمال الضغط الى حد 20 ضغط جوي وبدون تبرید.
 
ويسمى ب Liquefied Petroleum Gas

. البنزين الطبيعي وهو السائل الهيدروكاربوني المستخلص من الغاز الطبيعي الرطب ويحتوي على البنتان والهكسان بصورة رئيسية

 أستخدامات الغاز الطبيعي:
يعتبر الغاز الطبيعي أحد أهم مصادر الطاقة في العالم ، حيث بحرق قدم مكعب قياسي يتولد 700-1600 Btu من الحرارة أعتماداً على مكونات الغاز ، وقد شكّل الغاز الطبيعي حوالي 24% من مصادر الطاقة في الولايات المتحدة للأعوام من 2000-2002.

 مصادر الغاز الطبيعي
يمكن تصنيف الغازات الطبيعية بأنها الغاز الطبيعي التقليدي ،وهو الغاز الموجود في الطبقات الرملية للمكمن ، وغاز الميثان في المكامن المضغوطة جيولوجيا.
ويكون الغاز الطبيعي التقليدي أما غازاً مصاحباً أو غير مصاحب.
 

 ان مصادر الغاز الطبیعي تكون على نوعین:-
 1. الغاز الحر
Free Gas ویوجد في حقول حرة تحت اعماق الارض ویكون على الاغلب من النوع الجاف أي یحتوي على الایثان والمیثان بصورة اساسیة.
 2. الغاز المصاحب
Associated gas ویظھر مصاحب للبترول عند استخراجة من اعماق الارض ویفصل في محطات عزل الغاز (تثبیت النفط) .

المصادر:

الغاز الطبيعى

                          www.abastaher.com

 

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 589 مشاهدة
نشرت فى 25 مارس 2014 بواسطة abastaher
( المــــراجل البخاريـــة ) أخطارها – أساليب الوقاية منهـا 1- المراجل البخارية : هي عبارة عن بناء من الصلب القوي وفي بعض الأنواع من الداخل بالطوب الحراري ومملوء جزئيا بالماء الذي يتم تحويله إلي بخار بالتسخين والبخار الناتج يستعمل في توليد القوي الكهربية أو في العمليات الصناعية والخدمية . 2- المتطلبات الواجب توافرها في المراجل البخارية : 1- أت تتوافر فيها المتانه وسهولة التركيب . 2- أن تكون المواد المستخمة في تصنيعها محددة بالمواصفات العالمية . 3- زيادة أسطح التسخين لإتمام عملية التبادل الحراري بكفاءة عالية . 4- جميع الملحقات المتصلة بالغلاية يتم فحصها جيدا . 5- أن يكون حيز البخار داخل الغلاية كبير لإمكانية التحرك الحر للبخار من المياه ( عملية فصل البخار من المياه ) . 6- أن يمون بيت النار ( الفرن ) كاف لتحقيق الإحتراق الكامل للغازات قبل خروج العادم من المدخنه . 7- أن يتم تحريك المياه بصفه منتظمة حتي يكون هناك توزيع منتظم لدرجة الحرارة سواء كانت داخل المواسير أو داخل بدن المراجل . 3- المتطلبات الواجب توافرها في معدن المراجل التجارية : 1- يجب أن يكون المعدن قابل للتغير في الشكل بدون حدوث كسر وتسمي بالمطولية DUCTILITY . 2- أن يمون المعدن قابل لإستعادة شكله بعد زوال الأحمال المؤثرة ليه وتسمي ELASTICITY ( المرونه ). 3- عند حدوث تغير في شكل المعدن يتم التغير في الشكل بدون كسر أو شروخ دقيقة وتسمي الطرفية MALLEABILITY . 4- أن يكون سطح المعدن صلد وغير قابل للتآكل وتسمي هذه الخاصية بالصلاده HARDNESS . 5- أن يقاوم المعدن الإجهادات المتكررة سواء كانت لي أو انحناء وتسمي هذه الخاصية TOUGHNESS . 6- أن يكون المعدن متجانس في ترتيب التنظيمية البنية الداخلية HOMOGENEITY . 7- أن يتحمل المعدن لاجهادات شد عالية ( المقاومة القصوي للشد ) . 8- قابلية المعدن لتخزين الطاقة تحت الجهادات العلية ثم استعادتعا بعد زوال الحمل وتسمي هذه الخاصية بالرجوعية RESILIENCE . أنواع المراجل البخارية :يمكن تصنيف المراجل البخارية بعدة طرق تبعا للآتي : 1- حسب مركز الوعاء ( SHELL ) اذا كان أفقي أو رأسي . 2- حسب الإستعمال إذا كان متحرك أو ثابت أو بحري . 3- حسب وضع فرن الإشتعال ( داخلي – خارجي ) . 4- حسب الوضع النسبي للمياه وغازات الإحتراق وتنقسم إلي : أ – مراجل مواسير اللهب ب – مراجل مواسير المياه . 5- مراجل ذات نوعية خاصة . الفرق بين مراجل مواسير اللهب ومراجل مواسير المياه : في مراجل مواسير المياه تكون المياه محبطة بمواسير اللهب من الخارج والحريق يتم داخل المواسير أما مراجل مواسير المياه حيث تمر المياه داخل المواسير ويكون الحريق ونواتج الإحتراق من الخارج . أنواع مراجل مواسير اللهب 1- مراجل مواسير لهب اسطوانية أفقية ( نوع جاف ) . 2- مراجل مواسير لهب أسطوانية رأسية ( نوع جاف ) . 3- مراجل مواسير لهب رأسية ( نوع رطب ) 4- مراجل مواسير لهب ذات مسارين أو ثلاثة مسارات . 5- مراجل مواسير لهب للقاطرات . المكونات الأساسية لمراجل مواسير اللهب : 1- البدن ( الجسم ) وعادة يكون علي شكل اسطوانه . 2- غرفة لهب أمامية 3- محبس الضغط 4- فتحة محبس للتهوية صمام أمان . 6- جهاز بيان مستوي المياه . 7- فتحة تفتيش 8- فاصل مياه 9- فتحة خروج مياه . 10- فرن ( تبريد خلفي بالماء ) .11- التهوية الخلفية . 12- مخرج الغازات . 13- مواسير الدخان 14- سخان الوقود ( أ ) عوامة خارجية . 15- ماسورة اللهب الرئيسية . 16- فتحات تنظيف . 17- عوامة داخلية . 18- العزل الخارجي . 19- شاسيه . 20- ولاعة . 21- مروحة هواء 22- لوحة تشغيل . مراجل مواسير المياه : المكونات الأساسية لمراجل مواسير المياه . 1- صمام عدم رجوع مركب علي مدخل مياه التغذية . 2- مواسير الموفر . 3- أسطوانة ( المياه- البخار ) . 4- طلمبة دفع المياه 5- الموزع . 6- غرفة الحريق . 7- مواسير المبخر . 8- مواسير التحميض . 9- مخرج الخار المحمص . ولضمان سلامة وأمان مراجل مواسير المياه من الإنفجار نتيجة انخفاض مستوي المياه تكون كمية المياه المستخدمه في توليد البخار عشرة أمثال كمية البخار المتولده . تكون البخار : يتكون البخار داخل الغلاية ( المرجل ) تحت ضغط ثابت ودرجة حرارة ثابته ويزداد الضغط ودرجة الحرارة عند الحصول علي بخار محمص اذ تصل درجة الحرارة في بعض الأحيان ( 320 -515C ) والضغط من 20 ضغط جو إلي 120 ضغط جو. ونظرا للضغوط العالية وارتفاع درجة الحرارة فإن المراجل البخارية تمثل عند تعرضها للإنفجار خطرا جسيما علي المنشأة المقام عليها المرجل والمنشآت المجاورة لذلك نص عليها القانون رقم 55 لسنة 1977 والقرار رقم 49 لسنة 1978 والخاص باللائحة التفيذية للقانون وقد ألزم الملك باتباع الإشتراطات العامة والفنية الخاصة بإقامة المرجل وكذلك التفتيش الدوري واجراء مخاطر المراجل البخارية : تعتبر المراجل البخارية مخزنا كبيرا للطاقة حيث يمكن انفجارها عند حدوث خلل في أجهزة وسائل التحكم والأمان أو وجود أي قوي متزايده لذلك فهي تعتبر مثل القنبلة الموقوتة ويكون انفجار المرجل التجاري إما انفجارا كليا أو انفجارا جزئيا لبعض المكونات الداخلية يرجع للأسباب التالية : 1- انخفاض مستوي المياه داخل المرجل يصاحبه ارتقاع في درجة الحرارة والضغط مما يؤدي إلي حدوث انفجار للمرجل . 2- تكون الرغوة داخل المرجل مما يؤدي إلي بيات وهمي لمستوي المياه داخل المرجل ويرجع تمون الرغوة إلي سوء عملية المعالجة لمياه التغذية . 3- الإنخفاض المفاجيء لمستوي المياه داخل المرجل نتيجة سحب كمية كبيرة من البخار الخارج عند الطلب نظرا لضيق حيز البخار داخل المرجل . 4- حدوث ارتخاء في ماسورة اللهب الرئيسية . 5- حدوث انتفاخات في ماسورة اللهب الرئيسية أو في بدن غرفة الحريق . 6- حدوث تآكل في مكونات المرجل نتيجة ترسيب الأملاح أو وجود الأكسجين الذائب في مياه التغذية أو تكون الأحماض الكربونية تأثير الهيدروجين : يحدث انهيار لمكونات المرجل الداخلية نتيجة تكون الهيدروجين وتغلغله في بنية المعدن علي حدود الحبيبات ينتج عن تفاعل علي كربيد الحديد مكونه غاز الميثان وعند زيادة ضغط الغاز يحدث فصل لجزيئات المعدن مسببا شروخ دقيقة تتزايد حتي يحدث الكسر. 8- تأثير الأكسجين : أكثر المكونات التي تتأثر بالأكسجين في المراجل البخارية هو الموفر وكذلك سخانات مياه التغذية ومواسير المحمص ويؤدي الأكسجين لحدوث حفر دقيقة ( Pits ) في المعدن مما يجعل تلك الحفر مركز للاجتهادات ينتج عنها شروخ دقيقة بفعل اجهد الكلال ( fatigue ) . 9 - تأثير هيدروكسيد الصوديوم : يؤدي لحدوث قصافة للمعدن مما يؤدي لعدم حدوث استجابة للمعدن للتمدد والإنكماش مما يسبب في انهياره . 10- عيوب ناشئة عند تشكيل المعدن وتتمثل في الآتي : أ- وجود بخبخة ( voids ) فراغات في معدن المواسير أو شروخ في تماسيح الحديد ( ingot ) . ب- وجود أخطاء في عملية التصنيع خوصا عند الوصلات ناتج عن سوء عملية الدرفلة . ج- وجود أخطاء ناتجة عن عمليات اللحام . 11- انهيار المعدن نتيجة سوء عمليات اللحام : بسبب زيادة المسامية ووجود شوائب في منطقة اللحام والإنصهار الغير كامل وعدم تغلغل معدم اللحام لملء منطقة اللحام . - المسامية ( porsoity ) : تنشأ نتيجة وجود فقاعات غازية في منطقة اللحام . . - الشوائب ( slag inclusions ) عبارة عن شوائب الخبث الناتج من عملية اللحام وتترسب مع المعدن المصهور وتكون منطقة عازلة تمثل شرخ بطول اللحام . - الإنصهار الغير كامل ( incomplete fusion ) : يمكن التغلب علي تلك المشكلة بزيادة التيار الكهربي للحام وتقليل سرعة اللحام . - حدوث قطع منخفض لمنطقة اللحام ( شروخ دقيقة ) under cut : يحدث انصهار للمعدن ينتج عن طريق اجهاد الكلال الميكانيكي أو الحراري . - عدم التغلغل الكاف لملء منطقة اللحام : يؤدي إلي انصهار المعدن عند تعرض لاجهاد ميكانيكي – حراري 12- تأثير نواتج الإحتراق : تنشأ مركبات الفانديوم والصوديوم الناتجة عن حرق الوقود ( N20 – V2O5 ) هذه المركبات تعمل علي سرعة أكسدة معدن المواسير وهذه الأكسده تعمل علي تقليل سمك المعدن وبالتالي تقل المساحة المعرضه للاجتهادات الحرارية مما يعرض المعدن للكسر . لذلك يجب ضبط نسبة خلط الهواء مع الوقود لتقادي تكون مركبات الفانديوم . - بالإضافة إلي مركبات الفانديوم والصوديوم وجود ثاني أكسيد الكبريت ( So3 – So2 ) وبخار الماء ( H2o ) وثاني أكسيد الكربون ( Co2 ) واول أكسيد الكربون ( Co ) . 13- حدوث اختلاف فى الخواص الميكانيكية للمعدن نتيجة تعرضة للحرارة العلية من جانب ويتعرض للتبريد من جانب آخر مما يؤدي إلي عدم إستجابة المعدن للتمدد والإنكماش أو حدوث ترسيب عند الوصلات والدعامات الرابطة للمواسير والألواح . وسائل التحكم والأمان في المراجل البخارية : تتضمن تلك الوسائل الصمامات والعدادات والوصلات والأجهزة المتصلة مباشرة بالمرجل وتكون ضرورية للتشغيل بكفاءة وأمان ومن أهم تلك الوسائل : 1- صمام الأمان safety valve : ويعمل علي تصريف البخار لتفادي زيادة الضغط وعدم حدوث انهيار للمرجل . 2- عداد يبين ضغط ( steam gage ) : يبين ضغط البخار داخل المرجل . 3- زجاجة البياان water gage : لمعاينة مستوي المياه داخل المرجل . ( 3) عوامة : لتشغيل طلمبة مياه التغذية عند انخفاض مستوي المياه داخل المرجل . 4- صمام منع ( إيقاف ) stop valve : يتحكم في تصريف البخار من المرجل بحيث يسمح بمرور البخار أو يقطعه حسب الطلب . 5- وصلات التغذية وتتضمن : مواسير تغذية المياه إلي المرجل والصمامات المركبة علي خطوط تلك المواسير . أ- صمام عدم الرجوع check valve . ب- صمام منع ( إيقاف ) stop valve . ج- مواسير المياه الناقلة إلي المرجل . 6- وصلات تصريف ( blow off connection ) : وتشمل مجموعة المواسير والصمامات الخاصة بتقليل تركيز الشوائب الذائبة في مياه المرجل وذلك يتصرف الحمأة أو الرواسب وتفريغ الغلاية عند الضرورة . أ- صمام تصريف BLOW OFF VALVE . 7- السيفون SIPHON : فائدته منع البخار من الدخول إلي مبين ضغط البخار ويوجد ثلاثة أنواع من السيفون : أ- سيفون أنبوبي ب- سيفون مشع ج- سيفون علي شكل حرف ( U ) . 8- تركيب ترمومتر لقياس درجة حرارة العادم لضمان حدوث التبادل الحراري والأحتراق الكامل للوقود . إختيار صمام الأمان ( السعة ) : يمكن إجراء اختيار صمام الأمان أثناء تشغيل المرجل وذلك باجراء إيقاف سحب لكمية البخار داخل الغلاية ثم تشغيل الغلاية بأقصي حمل تحت تلك الظروف . صمام الامان لا يسمح بزيادة الضغط أكثر من 6 % فوق أقصي ضغط تشغيل حيث يقوم بتصريف البخار الزائد . التحكم في عملية الإحتراق ( الولاعة ) : لاتمام عملية الإحتراق بأمان للمراجل البخارية يجب أن يشتمل نظام الإشعال علي صمام أمام ايقاف FLAM FAILURE ,LIMIT SWITCHES ,SAFETY SHUT VALVE برنامج لبدء التشغيل والإيقاف. ويحقق نظام التحكم في الإشتعال لأي إستجابة للمرجل عند التغير في كمية البخار المطلوب سحبها كذلك ايقاف الشعلة في وجود أي ظروف غير آمنه . المباديء الأساسية لأنظمة التحكم في عملية الإشتعال : 1- OFF- ON 2- POSITIONING 3- METERING . أولا : OFF – ON : يستعمل هذا النظام بين مستويين للبخار عند بداية التشغيل وعند الإيقاف حيث يعمل علي قطع الوقود والهواء الواصل إلي الشعلة . من عيوب هذا النظام الفقد في الحرارة عند ايقاف المرجل وبالتالي نقل كفاءة المرجل . ثانيا POSITIONING : من خلال هذا النظام يتم التحكم في نسبة خلط الهواء والوقود مع تغير الاحمال وبالتالي لا يحدث من خلال هذا النظام فق فقد حرارة المرجل . ثالثا : METERING TYPE CONTROL : من خلال هذا النظام يتم التحكم في نسبة الخلط بين الوقود والهواء ولكن يستعمل عندما يتم تشغيل المرجل تحت أحمال متغيرة . سحب الغازات ( نواتج الإحتراق ) DRAFT : ويعرف بالفرق في الضغط الذي يسمح بمرور الغازات من خلال فرن المرجل ومواسير اللهب والمدخنه إلي الجو وفائدته إمداد المرجل بالهواء الكاف لتحقيق الإحتراق الكامل للوقود وتحت ضغط مناسب ليتحكم في مقاومة الإحتكاك الناشيء عن بدن المرجل والمواسير وحوائط الفرن وبطانة المدخنه . طرق سحب الغازات من المرجل : 1- السحب الطبيعي : ويتم التحكم في عملية السحب الطبيعي يدويا وذلك بالتحكم بفتحة بوابة مثبتة في المدخنه . 2- السحب الميكانيكي : ويتم التحكم في عملية السحب عن طريق مروحة وأحيانا يستعمل بدفع تيار من البخار . * المدخنه : وتتم عن طريقها التخلص من نواتج الإحتراق الناتجة من حرق الوقود المستعمل في المرجل وتركب المدخنه من الصلب أو الطوب أو الخرسانه وتبطن من الداخل FIREBRICK أو بمادة مقاومة لحريق . المباديء الأساسية الواجب توافرها عند تصميم المدخنه : 1- أن يكون ارتفاع المدخنه يحقق عملية سحب الغازات المطلوبة من داخل المرجل . 2- مساحة مقطع المدخنه يكون مناسب لأحمال المرجل . 3- أن يكون تثبيتها متينا وقاعدتها مناسبة للإرتفاع . 4- تقاوم الضغط الناشيء عن الرياح ومقاومة للعوامل الجوية ( المطر والحرارة ) . 5- تبطن من الداخل لحماية جسم المدخنه وتفادي حدوث فقد في الحرارة من خلال الإشعاع . الغرض من تبطين المدخنه : 1 - عدم حدوث تمدد نتيجة الفرق في درجة حرارة الغازات الماره في داخل المدخنه ودرجة حرارة الهواء علي السطح الخارجي . 2 - حماية جسم المدخنه بفعل التآكل الناشيء من نواتج احتراق الوقود . 3 - تغيير البطانه الداخلية دون الحاجة لتغيير المدخنه كليا . حساب DRAFT PRESSURE : DP = 0.52 X H X P ( 1/TO – 1/TC ) . حساب ارتفاع المدخنه : H = DP 0.52 P (1/TO – 1/TC ) DP: DRAF PRESSURE H: HIGH OF CHIMNEY P: ATM. PRESSURE TO: OUTSIDE TEMPERATURE TC: TEMPERATURE OF CHIMNEY GAS ABSOLUTE . اجراءات الصايانه المتبعة عند اخراج المراجل من الخدمه مؤقتا : 1- نزع جميع الفيوزات من الدائرة الكهربية للشعلة . 2- تنظيف السناج من الفرن والمواسير . 3- اجراء عملية التفريغ للمرجل . 4- التخلص من الرواسب والشوائب المترسبة داخل المرجل . 5- تركيب طبب تمنع التسريب وتغيير العوازل التالفة . 6- اجراء تنظيف واصلاح شامل لجميع الملحقات المركبة علي المرجل مثل صمام الامان وزجاجة بيان الصمامات والمحابس . الإجراءات المتبعة عند اعادة المرجل للخدمه : 1- ملء المرجل بالمياه إلي مستوي التشغيل . 2- تركيب الفيوزات بعد تغييرها . 3- اختيار جميع وسائل التحكم والأمان علي المرجل وتشمل : صمام الأمان - محابس مياه التغذية - ومحابس الوقود . إجراءات الصيانه والإصلاحات للمرجل : 1- إجراء عمليات اللحام للشروخ بأشعة X . 2- اجراء عمليات الإصلاحات باللحام والترميم ( الترقيع ) بقطع من الصاج للبدن وللمواسير . 3- كيفية استخراج مواسير الدخان التالفة من مراجل مواسير اللهب . أ- المواسير المتواجده في مركز الملف . ب- المواسير المتواجده في قاع الملف . 4- الإجراءات المتبعة عند إحلال وتجديد مواسير الدخان في مراجل مواسير اللهب . 5- تركيب المراجل . فحص وصيانة المرجل من الداخل : - بعد إجراءات عمليات النظافة للمرجل من الداخل يتم فحص جميع الألواح الصاج والمواسير والبرشام والمسامير والدعامات وباقي المكونات الداخلية من ناحية عدم وجود تآكل أو كسور أو شروخ دقيقة أو تغيير في الشكل . - وفي حالة وجود شروخ في الدعامات أو عيوب في وصلات البرشام يتم إعادة الثقوب الخاصة بوصلات البرشام بثقوب علي شكل مسلوب . - لاجراء الفحص الخارجي للمرجل يتم الكشف علي المسامير الخارجية والعزل الخاص بالفرق والتأكد من عدم وجود تصدع في الأعمده الحامله للمرجل والأعتاب ( BEAMS ) فحص المواسير والألواح التي تكون في اتجاه النار والتخلص من الشوائب المترسبة عليها والحمأة أما في الجانب الخاص بالمياه فيجب ملاحظة سمك معدن الألواح والمواسير . - تنظيف أسطح التسخين . - يجب تنظيف الأسطح المعرضة للتسخين من السناج المترسب عليها سواء من الداخل أو من الخارج - وذلك باستعمال HAND SCRAPER ثم بعد ذلك يتم التنظيف باستعمال الهواء المضغوط . - يجب إجراء عملية التبريد أولا قبل إزالة السناج والرواسب من الأولواح أو داخل المواسير وخارجها . معالجة مياه التغذية : الغرض من عملية المعالجة لمياه التغذية قبل إستعمالها داخل المرجل للتخلص من وجود الرغوة داخل المرجل وترسيب الحمأة وتكون القشور علي أسطح التسخين والتي تعوق انتقال الحرارة من خلال المعدن ( فقد في الحرارة ) مما يؤدي إالي حرق المعدن . أهم الشوائب المتواجده في مياه التغذية : 1- مواد علي شكل قشور تتكون من كربونات وسلفات الكالسيوم والماغنيسيوم . 2- تكون رغوة من مواد معدنية أو عضوية . 3- ثكون الحمأة وتكون من جزئيات صلبة أما معدنية أو عضوية تكون عالقة في مياه التغذية . 4- CORROSIV SUBSTANCE : وهي عبارة عن مركبات كيميائية منها كلوريد الماغنيسيوم والأحماض الكربونية وغاز الأكسجين وثاني أكسيد الكربون . طرق معالجة مياه التغذية : يوجد ثلاثة طرق لمعالجة مياه التغذية : 1- الطريقة الميكانيكية : وتستخدم في عملية معالجة الفلاتر وخزانات الترسيب . 2-الطريقة الكيميائية : وتستخدم المركبات الكيميائية لإتمام عملية المعالجة قبل دخول مياه التغذية للمرجل أو بعد دخولها . 3-الطريقة الحرارية : حيث تستخدم سخانات لإجراء عملية المعالجة لمياه التغذية . المواد الكيميائية المستخدمة في معالجة مياه التغذية . أ‌- جير مطفي ( CA ( OH ) 2 ) SLAKED FIME . ب‌- كربونات الصوديوم ( NACO3 ) SAD ASH . - التخلص من الهواء والغازات المذابة من مياه التغذية . - التخلص من الشوائب المترسبة والعالقة في مياه التغذية بصفة مستمرة . إحتياطات السلامة للمراجل التجارية : لتأمين وسلامة المنشأة من مخاطر الإنفجارات للمرجل نتبع الآتي : 1- جميع أجهزة التحكم المتصلة بالمرجل توضع تحت المراقبة والمتابعة الدقيقة لتوفير أقصي حماية للمرجل لعدم حدوث الإنفجار ( بيان الضغط – مستوي المياه – درجة الحرارة ) 2- توفير وسائل اللإنذار واللوحات الإرشادية والتحذيرية لإعطاء إشارات صوتية عند حدوث أي خطر من قبل المرجل . 3- توفير أجهزة مكافحة الحريق داخل غرفة المرجل مع ترك مسافات جانبية كافية لاجراء عملية الصيانه والإختبارات للمرجل 4- تعليق حساسات أعلي المرجل خصوصا عند منطقة الولاعة ( الشعلة ) وتكون متصلة بأجهزة مكافحة الحريق ذاتيا . 5- عدم وجود مواد قابلة للإشتعال في الفراغ الموجود بين المرجل وحوائط المبني به . 6- تدريب القائمين علي إدارة وتشغيل المرجل . 7- عزل جميع الوصلات الكهربية عزلا جيدا وكذلك تغطية مواسير البخار بعوازل حرارية . 8- الكشف علي خطوط البخار ومياه التغذية للتأكد من عدم وجود أي تسريب . 9- إجراء عمليات الصيانة الدورية . 10- أن تكون مدخنة المرجل بارتفاع لا يقل عن 2 متر أعلي مبني بالمنطقة في دائرة نصف قطرها 50 م وأن تزود نهايتها بمانع للشرر . 11- إجراء عملية المراجعة والفحص الدوري للمياه المعالجة بصفة مستمرة للتأكد من عدم وجود أملاح في مياه التغذية قبل دخولها للمرجل . فحص وأختبار المرجل : 1- يتم تبريد المرجل ببطء . 2- تفريغ المرجل من الماء بفتح صمام التفريغ أسف المرجل مع فتح الصمامات المركبة علي خط المياه لتسمح بدخول الهواء داخل المرجل لتفادي حدوث تخلخل هواء داخل المرجل .
abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 3626 مشاهدة
نشرت فى 27 ديسمبر 2012 بواسطة abastaher

<!--

<!--<!--

حساب كفاءة الغلاية

مازلت على وعدى بتبسيط المعلومة قدر الامكان

كمية الحرارة التى اكتسبها الماء حتى تحول الى بخار
الطريقة المباشرة = _________________________________ x 100

الطاقة فى الوقود المحترق لإنتاج الكمية السابقة من البخار


الطريقة الغير مباشرة :-
( % )
الكفاءة = 100 % - مجموع الفواقد ( % )
الطريقة السريعة :-
نقيس الآتي:
1-
درجة حرارة غازات العادم
2-
نسبة الأكسيجين فى غازات العادم أو نسبة ثاني أكسيد الكربون
3-
واعتبار الفواقد الأخرى قيمة تقريبية ثابتة = 6%
مثال ذلك :
درجة حرارة غازات العادم = 285 م
نسبة الأكسيجين بالحجم = 4%
اعتبار الفواقد الأخرى = 6 %
درجة حرارة الجو = 30 م
ومن المنحنيات عند خط أفقي 4 % نسبة الأكسجين وعند تقاطعه مع منحنى الأكسجين ونصعد رأسيا حتى نتقاطع مع منحنى ( 285 – 30 ) = 255م درجة حرارة غازات العادم وعندها نتحرك أفقيا لقراءة نسبة الفواقد فنجدها 17 %
عند ذلك يمكن حساب كفاءة الغلاية = 100 – 17 – 6 = 77 %
كفاءة الحريق = ( 100 - الفواقد فى غازات العادم )

قلل الفواقد فى غازات العادم تتحسن كفاءة الغلاية

اهم العوامل التى يجب ان تراعى لتحسين كفاءة الغلاية :
ضبط كمية الهواء :
تعتمد كفاءة الغلاية بطريقة مباشرة على معدل الهواء الذائد لذا يجب ان يكون ويظل عند المستوى العملى الازم لعملية الحريق حيث لايجب ان يزيد عن ماتحتاجه الولاعة من الناحية العملية للحريق
ضبط عمل الولاعة :
لابد من مناسبة معدل الخليط بين الوقود والهواء للولاعة وكذلك تكون الولاعة متحكمة فى نسبة الهواء للوقود عند زيادة او نقص الحمل اتومتيكيا
معدل الحريق :
ان اعلى كفاءة لتشغيل الغلاية تحدث عندما يكون معدل الحريق من 70 % الى 90 % من طاقة معدل الحريق الكلية ولزيادة كفاءة الغلاية يجب ان تعمل عند 90% من طاقتها وان لاتعمل عند اقل من 70 % من طاقة معدل الحريق
درجة حرارة العادم :
يجب ان تكون درجة حرارة العادم اقل ما يمكن للوصول الى اعلى كفاءة وهناك سببان يؤديان الى ارتفاع درجة حرارة غازات العادمهما :

 

ا- ان سطح التبادل الحرارى داخل الغلاية غير كافى
ب - وجود رواسب على سطح التبادل الحراى تعوق انتقال الحرارة بين المياه والغازات الناتجة من الحريق وهو مايسمى بظاهرة fouling
5 -
ضبط درجة حرارة مياه التغذية :
عند رفع درجة حرارة مياه التغذية 6م تقل كمية الوقود الازمة 1% وهذه مهمة للغاية ايضا للحفاظ على جسم وكفاءة الغلاية ( ويوفر التكاليف ايضا )
6 -
درجة حرارة الهواء للحريق :
عند تسخين الهواء الداخل للحريق ترتفع كفاءة الغلاية من الناحية العملية فعند زيادة درجة حرارة الهواء 56م تزيد كفاءة الغلاية 2%


وبضبط معدلات العوامل السابقة يتم الوفر فى قيمة الوقود المستهلك من 2.5 % الى 10 %

 

العوامل التى تؤثر على كفاءة نظام استخدام البخار
داخل الوحدات الانتاجية :
ا - اجهزة التحكم فى الضغط المطلوب مثل المخفضات مثلا
ب - ضبط مصايد البخار وطريقة عملها
ج - عزل المواسير والوصلات والمعدات المستهلكة للبخار
د - ضبط اجهزة التحكم فى الحرارة
فى خطوط التوزيع الرئيسية للبخار :
ا - ضبط الضغط المناسب فى هذه الخطوط
ب - تركيب الأقطار المناسبة للمواسير فى هذه الخطوط
ج - اتباع نظام جيد لتشغيل المصايد
د - تسريب البخار
ه - عزل الخطوط
 
داخل عنبر الغلايات :
ا - اختيار النوع الجيد والمناسب من الغلايات
ب - ربط كفاءة الحريق بالحمل المطلوب
ج - اجهزة التحكم فى حريق الولاعة
د - جودة المياه المعالجة لتغذية الغلاية
ه - الاسترجاع الحرارى من غازات العادم
و - الاسترجاع الحرارى من مياه التفوير

 

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 1990 مشاهدة
نشرت فى 16 ديسمبر 2012 بواسطة abastaher

<!--

<!--<!--

المواد المختلفة المؤثرة في نظام البخار :

- قيم الأس الهيدروجينى و أيونات الهيدروجين
:

عادة
تساعد القيم المنخفضة من الأس الهيدروجينى على عملية التآكل خاصة فى الحديد العادي حيث يؤدى هذا التآكل إلى حدوث الصدأ أو التأثير في سمك الجدران و ذلك تبعا للقاعدة أن النقر يتوزع بانتظام على الأسطح الداخلية عادة يزيد التآكل مع زيادة درجة الحرارة.

 - النيتروجين و الأكسجين
:

بوجه
عام فان النيتروجين لا يؤدى إلى اهلاكات على الرغم من أن وجوده في البخار يمكن أن يؤدى إلى تكون جيوب هوائية في الأنواع المختلفة لأجهزة التسخين حيث تؤثر على انتقال الحرارة.

يعتبر الأكسجين المذاب العامل الأساسي
لصدأ الحديدي حيث تظهر المخاطر عند درجات الحرارة الأعلى من 60 إلي 90 درجه مئوية الناتجة من التآكل بالأكسجين و هي عملية النقر في الأسطح الحديدية و الملامسه للمياه . هذا النقر يتخلل بسرعة و يصبح عميقاً و يمكن أن يخترق حائط الأنبوب أو التنك في فتره زمنيه صغيره جداً .

غالباً بتغطي النقر بكرات صغيره مشكله من ناتج التآكل المغناطيسي الأسود و يمكن أن تحيط مساحه كبيره


و يؤدي محتوي الأكسجين الأقل
.

  – الحامض الكربوني و البيكربونات
 : Carbonic acid & bicarbonate

يتكون الحامض الكربوني من تفاعل المياه مع ثاني أكسيد الكربون المذاب في الماء




CO2 + H2O = H2CO3
يتحلل الحامض الكربوني إلي أيونات الهيدروجين و التي تؤدى انخفاض قيمة
PH في المياه و هذا الهبوط يكون نتيجة :

انخفاض محتوي الحامض الكربوني الحر


زيادة البيكربونات في المحلول


عند
تسخين المياه المحتوية علي البيكربونات إلي درجة الغليان يتحرر ثاني أكسيد الكربون و تتحلل البيكربونات إلي كربونات و تزيد قيمة PH في المياه

2 HCO3 = CO3-2 + CO2 + H2O
عند ارتفاع درجة حرارة مياه الغلاية يحدث تحلل أكثر للكربونات و ثاني أكسيد الكربون

CO3-2 + H2O = 2 OH- + CO2
ثاني
أكسيد الكربون المنقسم داخل الغلاية يتصاعد مع البخار و الجزء الأكبر منه يذوب في المتكاثف عندئذ تؤدي الكميات الصغيرة من الحامض الكربوني إلي خفض قيمة PH نسبياً و التي بدورها تعمل علي تآكل مواسير الغلاية

 – القلويـــــــــــه
: ALKALI

عند
انفصال ثاني أكسيد الكربون من مياه التغذية أو مياه الغلاية بفعل التسخين تزيد قيمة PH و هذا يقلل التآكل في الغلاية و في نظام مياه التغذية و من المفضل اذا لم تحتوي مياه التعويض علي البيكربونات الكافية لتشكيل القلوية في الغلاية يجب أن تجهز مضيفات قلوية لمياه التغذية .

من جهة أخري يجب أل تزيد القلوية في مياه الغلاية لأنها تؤدي إلي زيادة الرغوية و الفوران في الغلاية


يمكن بسهوله تحديد شدة القلوية في المياه و ذلك بمعرفة قيمة
PH
 - الصوديوم و البوتاسيوم و الكلوريد و الكبريتات و النترات
: sodium , potassium

chloride , sulphate & nitrate

PH
 تكون جميع هذه الأيونات من النوع القوي و تشكل أملاح طبيعية و لا تؤثر في قيمة عموماً تشترك في أنها تزيد من تكوين الأملاح في مياه الغلاية و بالتالي تزيد من درجة التوصيل و اذا ترسبت علي جدران مواسير الغلاية أدت إلي ضعف كفاءة انتقال الحرارة و تسببت في رفع الضغط مما يؤدي إلي مخاطر كثيرة و يجب ألا تتعدي القيم القياسية المحددة المسموح بها و في بعض الحالات يمكن أن تؤدي القيم العالية للكلوريد إلي زيادة التآكل في النظام

 - الأمونيا
: ammonia:

نادراً ما توجد كميه كافيه من الآمونيا في المياه الخام و لكن غالباً ما تضاف حيث أنها تزيد من قيمة
PH

في
المتكاثف و يمكن أن توقف حالة التآكل في الحديد . و تذيب الآمونيا أكسيد النحاس و الذي يتكون عند تفاعل الهواء مع النحاس عموماً فإن طبقة الأكسيد تحمي النحاس من استمرار الأكسدة و لكن تستمر عملية التآكل في حالة وجود كلاً من الآمونيا و الأكسجين معاً

  – ثاني أكسيد السيلكون و حامض السيليكات
: ( silicon dioxide & silicic acid )

يمتص ثاني أكسيد السليكون
( SIO2 ) كميات مختلفة من المياه مؤديه إلي حدوث الحمضية

SIO2 + H2O = H2SIO3
و يتحلل الناتج إلي محلول قلوي و يتشكل أيونات السيليكات


H2SIO3 + OH- = HSIO3- + H2O
و
يكون تأثير أيونات السيليكات ضعيف جداً كما أنه لا يمكن تواجدها في محلول حمضي و عل ذلك فإن المياه القلوية بالغلاية تحتوي علي حامض السيليكا و الذي من مكوناته أيونات السيليكات حيث لا تمثل أيونات السيليكات مصاعب أو مشاكل لمياه الغلاية و لا للغلاية نفسها و لكن في وجود العسر تشكل بعض أنواع المشاكل في غلاف الغلاية .

يعتمد ذوبان حمض السيليكا في البخار علي
درجة الحرارة و الضغط و يعتمد تركيز حمض السيليكا في البخار علي تركيز حمض السيليكا و علي الحموضة في مياه الغلاية .
للحصول علي بخار بدرجة جوده كافيه لتشغيل التربينه فإنه يتم الاسترشاد بقيم محتوي حمض السيليكا في مياه الغلاية

 - تشكيلات العسر
 hardness formers
المواد
الرئيسية التي تؤدي إلي عسر المياه هي الكالسيوم و الماغنسيوم في الغلاية تتشكل هذه المواد علي غلاف الغلاية يحدث هذا بنفس طريقة ترسيب الصابون الجيري .

تتشكل طبقة الغلاية عند تكون العسر و في وجود ايونات معينه
خاصة الكربونات و السيليكات مؤدية إلي تكون طبقه غير قابله للذوبان و بالتالي تحدث سخونة الأسطح

  – المواد العضوية الآخري
humus & organic substances

تتعرض بعض عمليات معالجة المياه لمخاطر شديدة نتيجة وجود هذه المواد و عليه يجب التخلص منه و
humus  خاصة
و هي عبارة عن ماده سمراء تنشأ من تحلل المواد النباتية و الحيوانية و تشكل الجزء العضوي من التربة
.
أما
المواد العضوية الذائبة الأخرى كشوائب تدخل للغلاية بعد تحميلها للمتكاثف و تعتمد المخاطر علي مدي انفعالها مع الغلاية خلال عمليات التسخين حيث أنها أحياناً تسبب حموضة في مياه الغلاية مما يؤدي إلي الإسراع من عملية تآكل أنابيب الغلاية .
كما يؤدي وجود المنظفات الصناعية الحديثة بالمياه
إلي مشاكل مثل حدوث ر غاوي بالغلاية مما يرفع الضغط و قد يتسبب في حدوث انفجار في الغلاية
 – الحديد و الماغنسيوم
iron & magnissium
حيث
يكون للحديد و الماغنسيوم رواسب في الغلاية و التي تسبب اضطرا بات و مشاكل في عمليات معالجة المياه أولاً ثم تؤثر في مكونات غلاف الغلاية
-  
 الزيت oil :
عادة
يدخل الزيت لمياه لنغذيه عن طريق المتكاثف الملوث .و دائما يحتوي البخار المتكاثف القادم من آلات البخار الترددي reciprocating steam machinery علي ملليجرامات قليلة من الزيت لكل لتر .
لا تسبب الكميات البسيطة جداً من الزيت أي انهيارات عند الضغط المنخفض و لكن تؤدي الكميات الكبيرة

( في حالة التسريب ) إلي مخاطر شديدة لأن الزيت يؤدي إلي سخونة الأسطح و
يشكل طبقات عازله علي غلاف الغلاية يمكن أن يسبب ذلك مخاطر مكلفه في وقت قصير .
 – الطين و الرواسب الطينية
sludge & clays:
يؤدي
الطين و الرواسب الطينية في مياه الغلاية إلي تكون طبقات علي الجدران و بالتالي يؤثر علي عملية انتقال الحرارة كما أنه يشارك في حدوث الرغاوي في الغلاية
معالجة المياه الخام

تم علي عدة مراحل
:
  – المعالجة الأولية
: pretreatment
يجب إزالة المواد الموجودة بالمياه الخام
raw water قبل تنظيفها بالمبادل الأيوني . هذه المواد هي :
 – مواد طينيه
sludge
  – الحديد : و يتم ا:سدة الحديد باستخدام أكسجين الهواء الجوي
.
 – المواد العضوية الناتجة عن تحلل المواد النباتية و الحيوانية و يتم التخلص منها عن طريق المرشحات الرملية


  – التبادل الأيوني لنزع الأملاح
: ion exchange

يستخدم
التبادل الأيوني في معالجة المياه للتخلص من الأملاح الآيونيه المذابة في المياه و هي أما كاتيونات cations موجبة الشحنة أو انيونات anions سالبة الشحنة و الحصول علي مياه عالية الجودة و ذلك لأن الغلاية ذات الضغط العالي تحتاج إلي مياه عالية الجودة .

 – نزع الغازات
deaerion

توجد نظريتين لشرح نزع الغازات


 – قانون دالتون
Daltons law

و
التي تنص علي أن الضغط الكلي المبذول علي حوائط الوعاء يساوي مجموع الضغوط الجزيئيه لكل الغازات الموجودة بالوعاء و هذا يعني أنه اذا تواجدت عدة غازات بالوعاء مثل النتروجين و الأكسجين و البخار فإن الضغط داخل حاوية نزع الغازات = مجموع ضغط كل غاز موجود بها

 - قانون هنري
Henry,s awl

و الذي ينص علي أن كمية الغازات المذابة في المحلول تتناسب مباشرة مع الضغط الجزئي لهذا الغاز في الجو المحيط أعلي المذيب
.

في نازع الغازات يكون المذيب هو المياه و تكون أغلب الغازات المذابة عبارة عن نتروجين و أكسجين


يقترح
قانون هنرىتقليل كمية الغازات المذابة في المياه عن طريق تقليل ضغط الغازات الموجودة بالمياه المحيطة بنازع الغازات أي بتقليل الضغوط الجزيئيه .

فكرة عمل نازع الغازات
:

يمكن ببساطه توضيح عمل نازع الغازات بأنه عند تسخين المياه إلي درجة حرارة الغليان يتصاعد الأكسجين مع البخار
.

تسخن
المياه ثم تكسر إلي رذاذ صغير فعند دراسة قطره صغيره من مياه هذا الرذاذ يكون الضغط الخارجي الجزيئ لهذه القطرة نتيجة الأكسجين صغير جداً عندئذ أي أكسجين مذاب يهرب إلي البخار المتدفق خارجاً عن قطرة الرذاذ و يقذف إلي الخارج . يخفض نازع الغازات محتزي الأكسجين المذاب إلي أقل من 0.005PPM حيث أن وجود الأكسجين يعد العامل الرئيسي لعمليات التآكل

 - طلمبات كيميائيه
chemical pumps

تحتاج
معالجة المياه الداخلية إلي بعض الكيماويات تحقن إلي الغلاية تحت ضغط الغلاية و لإمكانية ذلك تستخدم مضخات حقن كيميائيه و هي عبارة عن طلمبات أزاح ه موجبه Positive displacement pump تحتوي علي دفه قابله للضبط و علي ذلك فأن كمية الكيماويات يجب التحكم فيها بعناية

ثلاثة طرق للتغلب علي حدوث التآكل هي
:

 – زيادة قيمة ال
PH في المتكاثف

 - إضافة عناصر لتخلص من الأكسجين المتبقي


  – إضافة عناصر لمنع المياه من أحداث رطوبة للحديد و بالتالي التغلب علي التآكل


تحلل
الأمونبا أكسيد النحاس بسهوله و الذي يتكون من تفاعل الأكسجين مع النحاس و لذلك تسبب إضافة الأمونيا مخاطر لخطوط المتكاثف و المبدلات الحرارية المصنعة من النحاس اذا لم يتم لتخلص من الأكسجين

يزيد معادل الأميدات
Neutralizing Amides في البخار من قيمة PH في المتكاثف و بالتالي يقل التآكل

الطاقة و تكلفة الوفر
energy cost saving

يجب
أن تكون نتيجة البرنامج الجيد و الكامل لمعالجة المياه الوصول إلي وفر في كلا من استهلاك الطاقة 7 البخار المتولد & تكلفة الصيانة و تكاليف الكيماويات المعالجة

يمكن للتوفيرات قصيرة الوقت
short term في الطاقة و الكيماويات المعالجة أن نسترجع تكلفة تطبيق برنامج المعالجة عند معدل فعال بالأضافه إلي فوائد و مميزات علي المدى الطويل مثل مقاومة التآكل و تكون القشور في حالة الغلايات الكبيرة فان تقليل الصيانات و انخفاض تكلفة التشغيل يصبح جوهريا.

أ – منع التآكل و القشور : يؤدي تكون القشور في الغلاية إلي انخفاض كفاءتها

ب- تقليل التفوير : يجب تقليل التفوير بقدر الأمكان و يمكن حساب المفقودات نتيجة التفوير

ج – استعادة المتكاثف

د – التسخين المسبق لمياه التغذية

الإجراءات بعد معالجة مياه التغذية و مياه الغلاية و المتكاثف
:

تضاف بعض المواد الكيميائية للحصول علي الخصائص المطلوبة في مياه التغذية و مياه الغلاية و المتكاثف للوصول للآتي
:

  – زيادة الأس الهيدروجيني
PH في مياه التغذية .

 - التخلص من العسر المتبقي


  – التخلص من الأكسجين المتبقي


 - منع التآكل في نظم المتكاثف


يتم إضافة الآتي لتحقيق ما سبق
:

 - إضافة هيدرازيدالصوديوم و التي تزيد القلوية لمياه الغلاية


 - إضافة فوسفات ثلاثي الصوديوم : و هو محلول قلوي يكون رواسب غير قابله
للذوبان مع مكونات العسر كقاعدة يتم المحافظة علي من 20 : 40 ملليجرام لكل لتر من P2O5 في مياه الغلاية في ضغط حتى 50 بار

يتم إضافة الفوسفات غلي مياه التغذية أو خط مياه التغذية بواسطة مضخة
metric pump

في النظم الكبيرة حين يتم التخلص من هذه المخاطر بإضافة الفوسفات مباشرة إلي الغلاية


 – الهيدرازين : و الذي يخلص مياه التغذية من الأكسجين المتبقي و يزيد قلوية مياه الغلاية كذلك يزيد من قيمة
PH في المتكاثف .

لفترات التوقف الطويلة يجب أن تجهز الغلاية بحوالي 100 مجم / لتر هيدرازين في مياه الغلاية


للحماية من حدوث تآكل


 – الأمونيا : و التي لا تزيد من قلوية مياه الغلاية و لكن تزيد قيمة
PH في المتكاثف

حماية التآكل في نظام المتكاثف
Prevent corrosion in condensate system

يحدث
التآكل في نظام المتكاثف نتيجة تأثير ذوبان الحمض الكربوني و الذي له قيمة PH منخفضة في المتكاثف أيضاً الأكسجين المذاب له تأثير علي التآكل .

ينتج
الحمض الكربوني من وجود البيكربونات (أو الحمض الكربوني الحر ) في مياه التعويض بينما ينتج الأكسجين من مياه التعويض التي لم ينزع منها الغازات

www.abastaher.com

      وقل ربى ذدنى علما

                        صدق الله والعظيم

 

abastaher

WWW.abastaher.com

  • Currently 1/5 Stars.
  • 1 2 3 4 5
1 تصويتات / 1030 مشاهدة
نشرت فى 13 نوفمبر 2012 بواسطة abastaher

<!--<!--<!--<!--<!--<!--

 التفوير (Blowdown)

يعتبر تفوير الغلاية جزءاً هاماً من نظام معالجة مياه الغلاية و يتطلب متابعة دقيقـة ومستمرة لضمان التحكم الجيد. و يسمح تفوير الغلاية بالتخلص من الطين و الحمأة والشوائب الأخرى التي قد تترسب بالجزء السفلى من أسطوانة الغلاية. و فيما يلي عرضاً لأنظمة تفوير الغلايات و أساليب التحكم فيها. و ينبغي أولاً معرفة كيفية تقدير كمية مياه التفوير التي يمكن حسابها كنسبة من البخر وفق المعادلة التالية:

 

% مياة تفوير    =                          Bf /  Bf – Bb  *  100 %        

حيث Bf  = المواد الصلبة الكلية الذائبة في مياه التغذية (جزء في المليون أو مج/لتر)

Bb        = الحد الأقصى للمواد الصلبة الكلية الذائبة المسموح به في مياه الغلاية (جزء في المليون أو مج/لتر)

مثال: المواصفات النمطية للغلايات الجاهزة (package boilers)  قد تتضمن البيانات التالية:

Bb  = 3000 جزء في المليون

Bf  = 100 جزء في المليون

100

 

3000 ـ 100

 
و بالتالي:    % مياه التفوير   =                           X  100%  = 3.45% من كمية البخار المتولد.

التفوير المتقطع و التفوير المستمر:

يمكن تفوير الغلاية بشكل متقطع حيث يتم صرف مياه التفوير من قاع اسطوانة الغلاية للتخلص من الحمأة المترسبة. عادة ما يتم التفوير المتقطع بشكل يدوي مرة واحدة لكل دفعة مياه (drift)  و على شكل نفخات أو ضخات متتالية (blasts)  حادة و قصيرة. و يتم تقدير كمية مياه التفوير المنصرفة بمراقبة انخفاض مستوى الحمأة في المقياس الزجاجي على جسم الغلاية، أو عن طريق تحديد زمن التفوير. و تتبع هذه الطريقة في الغلايات التقليدية ذات الغلاف الجداري (shell boilers).

كما يمكن تفوير الغلاية على شكل نزف مستمر (continuous bleed)  من مصدر يقع بالقرب من المستوى الأسمى للمياه (nominal water level)  . عند الغليان يرتفع تركيز المواد الصلبة عند سطح المياه لذلك فإن تفوير الجزء العلوي من الغلاية يسمح بخفض تركيز المواد الصلبة. و وفقاً للقياس الدوري (في مواعيد محددة) للمواد الصلبة الذائبة والكلية يمكن التحكم في فتح صمام النزف (bleed valve)  لصرف الجزء العلوي من المياه بشكل مستمر. و يتم التحكم في فتح صمام النزف في مواعيد ثابتة بإشارات كهربية دورية مرتبطة بمواعيد محددة أو ببعض خصائص مياه الغلاية مثل

 

التوصيلية الكهربية (electrical conductivity). و تتوافر في الأسواق أنواع من الغلايات ذات التحكم الأوتوماتيكي في المواد الصلبة الذائبة الكلية.

وفي طرق التفوير الحديثة يتم الاعتماد على التفوير المتقطع للتخلص من المواد الصلبة العالقة التي تترسب في قاع الغلاية، إلى جانب التفوير المستمر للتحكم في المواد الصلبة الذائبة الكلية . و ينبغي القيام بدورات التفوير المتقطع في فترات الأحمال البسيطة بحيث لا يسمح بتراكم الحمأة للحد الذي يعيق الانتقال الحراري مما يؤدي إلى حدوث أضرار جسيمة بالغلاية.

التحكم في التفوير:

في الأنظمة البسيطة ذات التحكم اليدوي، يتم ضبط صمام التفوير يدوياً للتحكم في كمية مياه التفوير بحيث يمكن الاحتفاظ بتركيز المواد الصلبة الذائبة تحت الحد الأقصى المسموح به والوارد بمواصفات الغلاية. و تستلزم هذه الطريقة أخذ عينات من المياه و تحليلها بشكل مستمر و التحكم في عملية التفوير حتى الوصول بخصائص مياه الغلاية إلى المستوى المطلوب.

     www.abastaher.com

                     وقل ربى ذدنى علما

                                    صدق الله العظيم

 

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 1201 مشاهدة
نشرت فى 16 أكتوبر 2012 بواسطة abastaher

<!--<!--<!--

المواد الكيماوية الخاصة بمعالجة مياة الغلايات البخارية

1) كربونات الصوديوم: تستخدم في الغلايات التي تعمل عند مستوى ضغط أقل من 14 بار لمنع تكون القشور و لزيادة قلوية مياه التغذية مما يحد من التآكل. و توفر بعض عمليات المعالجة الخارجية التي تستخدم فيها كربونات الصوديوم قدراً مناسباً من هذه المادة في مياه التعويض المعالجة.

2) الصودا الكاوية: يمكن أن تحل محل كربونات الصوديوم في غلايات الضغط المنخفض ، ويمكن الاستغناء عنها إذا ما وفرت المعالجة الخارجية درجة مناسبة من يسر المياه.

3) الفوسفاتات: تستخدم جميع أنواعها لمنع تكون القشور في الغلايات التي تعمل عند مستوى ضغط أعلى من 14 بار. وتعمل الفوسفاتات الزجاجية (glassy phosphates) على خفض ترسيب كربونات الكالسيوم في خطوط التغذية بالمياه الساخنة. و يمكن استخدام كل من الفوسفاتات الحمضية و الزجاجية للتخلص من الصودا الكاوية الزائدة الناتجة عن المعالجة الخارجية للمياه.

4) المركبات الكلابية (chelating agents)  : تستخدم كبديل للفوسفاتات لمنع تكون قشور الغلايات .

5) مضادات الرغوة (Anti-foams)  : تستخدم لمنع تكون الرغوة في الغلاية، و عادة ما تتضمن المركبات الكيميائية التي يوزعها الموردون لدى تسليم الغلاية مواداً مضادة لتكوين الرغوة، كما يمكن الحصول عليها في طلبات منفصلة من الموردين.

6) الأمينات المعادلة (neutralizing amines) : تستخدم لمعادلة ثاني أكسيد الكربون في متكثفات البخار و في خطوط التغذية، و بالتالي للحد من التآكل. و يعتبر استخدامها غير اقتصادي في أنظمة الغلايات التي تحتاج إلى كميات كبيرة من المياه التعويضية الغير معالجة. كما أنها لا تنـاسب تلك الأنظمـة التي تتضمن تلامسـاً مباشـراً بين البخـار و المنتجات الغذائية أو المشروبات أو المنتجات الطبية .

1)  كبريتيت الصوديوم (sodium sulfite)  : يستخدم للتخلص من الأكسجين الذائب في الميـاه و بالتالي للحد من التآكل. يتفاعل كبريتيت الصوديوم المركب (compounded sodium sulfite) بسرعة أكبر بـ 200 ـ 500 مرة من سرعة تفاعل كبريتيت الصوديوم الغير مركب (uncompounded sodium suflite)  مما يتيح حماية أكبر لأنظمة التغذية القصيرة. يضاف كبريتيت الصوديوم للغلايات المملوءة بالمياه عندما تكون في حالة توقف عن العمل أو في حالة جاهزة للاستخدام (stand-by) . كما يستخدم لتجنب حدوث التصدعات التي قد تنتج عن استخدام مواد كاوية في الغلايات المبرشمة.

 

8) الهيدرازين (hydrazine)  : يستخدم للتخلص من الأكسجين الذائب في المياه و بالتالي للحد من التآكل، و يمتاز بأنه لا يزيد من نسبة المواد الصلبة الذائبة، و يتفاعل الهيدرازين عند درجات حرارة أقل من 245ْم ، و لا يستخدم في الأنظمة التي تتضمن تلامساً مباشراً بين البخار و المواد الغذائية أو المشروبات.

9) نترات الصوديوم : تستخدم أيضاً لتجنب التصدعات التي قد تحدث بسبب استخدام مواد كاوية.

10) مزيلات الحمأة (sludge mobilizers) : تستخدم بعض المواد العضوية الطبيعية أو التخليقية لمنع التصاق الحمأة بالجسم المعدني للغلاية ، غير أن بعض هذه المواد يستخدم عند درجات حرارة محددة، لذلك ينبغي اتباع إرشادات الموزعين بدقة عند استخدام هذه المواد.

www.abastaher.com

 وقل ربى ذدنى علما

                  صدق الله العظيم

 

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 4139 مشاهدة
نشرت فى 16 أكتوبر 2012 بواسطة abastaher

<!--<!--<!--

-     اسباب معالجة المياه الخاصة بتغذية الغلايات البخارية

 

تعتبر نوعية الميـاه عنصراً أسـاسياً و مؤثراً في كفاءة الغلايـات و أنظمـة البخار. و تحتوي مصادر المياه المختلفة على شوائب متنوعة مثل الغازات الذائبة، و المواد الصلبة العالقة و الذائبة. و تعتمد عمليات معالجة المياه إما على إزالة تلك المواد أو تخفيض تركيزاتها إلى المستوى الذي يحد من تأثيراتها السلبية أو على إضافة مواد أخرى للحصول على نفس النتائج. و تهدف معالجة مياه التعويض في الغلاية
(make up water)  إلى:

·       منع تكون القشور في الغلاية (scales)  و في المعدات الملحقة بها و التي تؤدي إلى انخفاض كفاءتها و حدوث أضرار جسيمة بها.

·                    الحد من تكون الرغوة و تجنب تلوث البخار بالمواد التي تحتويها مياه الغلاية .

·       الحد من تآكل جسم الغلاية بسبب الأكسجين الذائب في مياه التغذية، و تآكل مواسير شبكة البخار بسبب تواجد ثاني أكسيد الكربون . و يحدد الملحق (C)  نوعية المياه التي يوصى باستخدامها لتغذية الغلايات.

و هناك طريقتين أساسيتين في معالجة المياه: المعالجة الخارجية و المعالجة الداخلية.

 

- المعالجة الخارجية للمياه

تعتمد هذه الطريقة على إزالة الشوائب الموجودة في المياه أو تخفيض تركيزاتها قبل دخولها إلى الغلاية. و تستخدم هذه الطريقة في حالة ارتفاع نسبة بعض الشوائب في المياه إلى الحد الذي لا يستطيع معه نظام الغلاية التعامل معها. و أكثر الطرق شيوعاً في المعالجة الخارجية للمياه هي التبادل الآيوني (ion exchange)  و نزع الغازات من المياه (dearation)  و نزع المعادن (demineralization)  . و تجدر الإشارة إلى أنه من الضروري إجراء كشف دوري على المتغيرات الأساسية التي تحدد نوعية المياه و تسجيلها، و يوضح الجدول (2-4) أهم تلك المتغيرات.

و تستخدم مجموعة الاختبارات الجاهزة للكشف عن نوعية المياه (water test kits)، أما الكشف عن الأملاح الذائبة الكليـة فيتم بواسطة جهاز قياس القدرة التوصيلية (conductivity meters) .

تحتوي المياه على نسب متفاوتة من بيكربونات و كلوريدات و كبريتات و نترات الكالسيوم و الماغنسيوم و الصوديوم، بالإضافة إلى السيليكا و بعض آثار الحديد و المنجنيز والألومنيوم .

تتسبب أمـلاح الكالسيوم و الماغنسيوم في عسر الميـاه، أما معظم قشـور الغلايات والترسيبات الأخرى في أنظمة التبريد فتتسبب فيها مركبات الكالسيوم و الماغنسيوم. و يمكن تقسيم أملاح الكالسيوم و الماغنسيوم إلى مجموعتين:

1)      بيكربونات الكالسيوم و الماغنسيوم التي تتسبب في العسر القلوي للمياه (العسر المؤقت أو عسر الكربونات) و يسهل التخلص منها بالتسخين،  فيتحرر غاز ثاني أكسيد الكربون مما يؤدي إلى تكثف البخار الحمضي الذي يرتبط بمشاكل التآكل في شبكة توزيع البخار .

كبريتات وكلوريدات و نترات الكالسيوم و الماغنسيوم التي تتسبب في العسر

2)      الغير قلوي (non-alkaline hardness)  (العسر المستديم) و لا يمكن التخلص من هذه الأملاح بالغليان. و عادة ما تتواجد النترات بكميات صغيرة للغاية.

 

إن استخدام المياه الخام مباشرة في الغلاية ينتج عنه تكون القشور الصلبة التي تلتصق بأسطح التسخين . و تتميز هذه القشور بانخفاض توصيلها الحراري (1.15 و 3.45 وات/متر ْم) مما يؤدي إلى ارتفاع درجة حرارة المعدن فيلين و تحدث به نتوءات و انبعاجات و شقوق عند الضغط المرتفع مما قد يتسبب في نتائج خطيرة.

و تعتبر أكثر الأجزاء تأثراً بهذه الظاهرة هي أنابيب المياه التي تتعرض للإشعاع الحراري ، أو مواسير الأفران في الغلايات ذات الغلاف الخارجي، حيث تكون معدلات انتقال الحرارة و بخر المياه مرتفعة. أما المواسير المعرضة للحرارة بواسطة الحمل

انتقال الحرارة و بخر المياه مرتفعة. أما المواسير المعرضة للحرارة بواسطة الحمل حيث تكون أسطح التسخين أصغر حجماً.

 

و تمثل الغازات الذائبة نوعاً آخر من المشكلات إضافة إلى مشكلات ترسب الحمأة والقشور. فتتسبب غازات ثاني أكسيد الكربون و الأكسجين الذائبة و ثاني أكسيد الكربون الذي يتحرر عند تسخين المياه التي تحتوي على البيكربونات في تآكل الموفرات و مكونات الغلاية الأخرى. و حيث أن البخار المتولد يحتوي أيضاً على هذه الغازات الذائبة فإن متكثفاته تؤدي كذلك إلى تآكل المواد المعدنية. و تحت ظروف معينة، قد الحراري أو التوصيل فإنها تستطيع تحمل سمكاً أكبر من القشور المترسبة قبل توقفها عن العمل. و تقدر الخسارة المباشرة في الحرارة أو في الوقود نتيجة ترسب القشور بـ 2% أو أقل في غلايات مواسير المياه بينما تصل إلى 5 أو 6% في غلايات مواسير اللهب يحمل البخار المتولد بعض الأملاح و المواد الصلبة العالقة إلى شبكة توزيع البخار والآلات التي تستخدم البخار فتترسب بها تلك الأملاح و المواد الصلبة.

                  www.abastaher.com

 "   وقل ربى ذدنى علما"

                       صدق الله العظيم

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 1295 مشاهدة
نشرت فى 16 أكتوبر 2012 بواسطة abastaher

<!--<!--<!--<!--

نزع الهواء (deaeration)
تتم خلال هذه العملية إزالة الأكسجين من المياه عن طريق التسخين فقابلية الأكسجين للذوبان في المياه تنخفض بارتفاع درجات الحرارة. و بذلك يمكن التخلص من الأكسجين في المياه برفع درجة حرارتها إلى درجة الغليان عند مستوى ضغط التشغيل (operating pressure) . و هناك تصميمات خاصة بالضغط و التفريغ تستخدم لهذا الغرض. في أنظمة نزع الهواء التي تعتمد على الضغط يتم ضخ البخار الساخن في المياه لإزالة الأكسجين و رفع درجة حرارة مياه تغذية الغلاية في نفس الوقت. أما وحدات التفريغ فتستخدم في الحالات التي لا تتضمن تسخيناً للمياه.
و تقوم معدات نزع الهواء البخارية (steam deaerators) بنشر المياه على شكل رذاذ أو غشاء رقيق جداً يدفع من خلالة البخار لطرد الغازات الذائبة مثل الأكسجين أو ثاني أكسيد الكربون. و يمكن بهذه الطريقة خفض محتوى المياه من الأكسجين إلى أدنى من 0.005 سم3/لتر ، أي عند الحد الذي يسمح بالكشف عن محتوى الأكسجين في العينات بالوسائل الكيميائية.
و يعكس ارتفاع الأس الهيدروجيني للمياه كفاءة نظام نزع الغاز، حيث يؤدي التخلص من ثاني أكسيد الكربون الذائب إلى ارتفاع الأس الهيدروجيني للمياه.

تقنيات معالجة المياه

تعتبر نوعية الميـاه عنصراً أسـاسياً و مؤثراً في كفاءة الغلايـات و أنظمـة البخار. و تحتوي مصادر المياه المختلفة على شوائب متنوعة مثل الغازات الذائبة، و المواد الصلبة العالقة و الذائبة. و تعتمد عمليات معالجة المياه إما على إزالة تلك المواد أو تخفيض تركيزاتها إلى المستوى الذي يحد من تأثيراتها السلبية أو على إضافة مواد أخرى للحصول على نفس النتائج. و تهدف معالجة مياه التعويض في الغلاية (make up water) إلى:
منع تكون القشور في الغلاية (scales) و في المعدات الملحقة بها و التي تؤدي إلى انخفاض كفاءتها و حدوث أضرار جسيمة بها.
الحد من تكون الرغوة و تجنب تلوث البخار بالمواد التي تحتويها مياه الغلاية.
الحد من تآكل جسم الغلاية بسبب الأكسجين الذائب في مياه التغذية، و تآكل مواسير شبكة البخار بسبب تواجد ثاني أكسيد الكربون . و يحدد الملحق (C) نوعية المياه التي يوصى باستخدامها لتغذية الغلايات.
و هناك طريقتين أساسيتين في معالجة المياه: المعالجة الخارجية و المعالجة الداخلية.

المعالجة الخارجية للمياه
تعتمد هذه الطريقة على إزالة الشوائب الموجودة في المياه أو تخفيض تركيزاتها قبل دخولها إلى الغلاية. و تستخدم هذه الطريقة في حالة ارتفاع نسبة بعض الشوائب في المياه إلى الحد الذي لا يستطيع معه نظام الغلاية التعامل معها. و أكثر الطرق شيوعاً في المعالجة الخارجية للمياه هي التبادل الآيوني (ion exchange) و نزع الغازات من المياه (deaeration) و نزع المعادن (demineralization) . و تجدر الإشارة إلى أنه من الضروري إجراء كشف دوري على المتغيرات الأساسية التي تحدد نوعية المياه و تسجيلها، و يوضح الجدول (2-4) أهم تلك المتغيرات.
و تستخدم مجموعة الاختبارات الجاهزة للكشف عن نوعية المياه (water test kits)، أما الكشف عن الأملاح الذائبة الكليـة فيتم بواسطة جهاز قياس القدرة التوصيلية (conductivity meters) .

جدول (2-4): أهم المتغيرات التي ينبغي الكشف عنها

 

المياه التعويضية

المتكثفات

مياه التغذية

مياه الغلاية

مياه التفوير

الأملاح الذائبة الكلية

X

X

X

X

X

القلوية

X

X

X

X

 

الكلوريدات

X

X

X

X

X

العسر

X

X

X

X

 

الأس الهيدروجيني

X

X

X

 

 

تكون القشور و الحمأة
تحتوي المياه على نسب متفاوتة من بيكربونات و كلوريدات و كبريتات و نترات الكالسيوم و الماغنسيوم و الصوديوم، بالإضافة إلى السيليكا و بعض آثار الحديد و المنجنيز والألومنيوم .
تتسبب أمـلاح الكالسيوم و الماغنسيوم في عسر الميـاه، أما معظم قشـور الغلايات و الترسيبات الأخرى في أنظمة التبريد فتتسبب فيها مركبات الكالسيوم و الماغنسيوم. و يمكن تقسيم أملاح الكالسيوم و الماغنسيوم إلى مجموعتين:
بيكربونات الكالسيوم و الماغنسيوم التي تتسبب في العسر القلوي للمياه (العسر المؤقت أو عسر الكربونات) و يسهل التخلص منها بالتسخين، فيتحرر غاز ثاني أكسيد الكربون مما يؤدي إلى تكثف البخار الحمضي الذي يرتبط بمشاكل التآكل في شبكة توزيع البخار .
كبريتات وكلوريدات و نترات الكالسيوم و الماغنسيوم التي تتسبب في العسر الغير قلوي (non-alkaline hardness) (العسر المستديم) و لا يمكن التخلص من هذه الأملاح بالغليان. و عادة ما تتواجد النترات بكميات صغيرة للغاية.
إن استخدام المياه الخام مباشرة في الغلاية ينتج عنه تكون القشور الصلبة التي تلتصق بأسطح التسخين . و تتميز هذه القشور بانخفاض توصيلها الحراري (1.15 – 3.45 وات/متر ْم) مما يؤدي إلى ارتفاع درجة حرارة المعدن فيلين و تحدث به نتوءات و انبعاجات و شقوق عند الضغط المرتفع مما قد يتسبب في نتائج خطيرة.
و تعتبر أكثر الأجزاء تأثراً بهذه الظاهرة هي أنابيب المياه التي تتعرض للإشعاع الحراري ، أو مواسير الأفران في الغلايات ذات الغلاف الخارجي، حيث تكون معدلات انتقال الحرارة و بخر المياه مرتفعة. أما المواسير المعرضة للحرارة بواسطة الحمل الحراري أو التوصيل فإنها تستطيع تحمل سمكاً أكبر من القشور المترسبة قبل توقفها عن العمل. و تقدر الخسارة المباشرة في الحرارة أو في الوقود نتيجة ترسب القشور بـ 2% أو أقل في غلايات مواسير المياه بينما تصل إلى 5 أو 6% في غلايات مواسير اللهب حيث تكون أسطح التسخين أصغر حجماً.
و تمثل الغازات الذائبة نوعاً آخر من المشكلات إضافة إلى مشكلات ترسب الحمأة والقشور. فتتسبب غازات ثاني أكسيد الكربون و الأكسجين الذائبة و ثاني أكسيد الكربون الذي يتحرر عند تسخين المياه التي تحتوي على البيكربونات في تآكل الموفرات و مكونات الغلاية الأخرى. و حيث أن البخار المتولد يحتوي أيضاً على هذه الغازات الذائبة فإن متكثفاته تؤدي كذلك إلى تآكل المواد المعدنية. و تحت ظروف معينة، قد يحمل البخار المتولد بعض الأملاح و المواد الصلبة العالقة إلى شبكة توزيع البخار و الآلات التي تستخدم البخار فتترسب بها تلك الأملاح و المواد الصلبة.
و تتضمن المعالجة الخارجية للبخار:
أ- التبادل الآيوني:
يهدف التبادل الآيوني إلى خفض درجة عسر المياه، أو تيسير المياه. فالأملاح الذائبة في المياه تتحلل إلى أيونات تحمل شحنات موجبة أو سالبة و لها درجات مختلفة من الحركة و تتضمن الأيونات الموجبة (الكاتيونات cations) أيونات المعادن و الهيدروجين. أما الأيونات السالبة (أنيونات anions) فلها أهمية خاصة في عمليات تيسير المياه و منها :
كب أ4– ، كل- ، ن أ3- ، يد ك أ3- ، ك أ3
إن العديد من التفاعلات الكيميائية، مثل عمليات الترسيب، تعتمد في الأساس على التفاعل بين الأيونات المختلفة في المحاليل. و عند تمرير المياه على بعض المواد الصلبة تتبادل الأخيرة آيوناتها مع آيونات المواد الصلبة الذائبة في المياه. و قد تم رصد ظاهرة التبادل الآيوني أولاً في بعض المعادن (الزيوليت zeolites) و خاصة سليكات صوديوم الألومنيوم (sodium (aluminium silicates . و عند تخلل المياه الخام لطبقة متدرجة من الزيوليتات يتم إحلال أيونات الصوديوم محل أيونات الكالسيوم و الماغنسيوم و بالتالي تنخفض درجة عسر المياه. و بمرور الوقت تستنفذ أيونات الصوديوم في الزيوليت و تتحول الطبقة إلى زيوليت الكالسيوم و الماغنسيوم. و من الممكن استعادة طبقة زيوليت الصوديوم عن طريق المعالجة بمحلول قوي من كلوريد الصوديوم (brine) . إن الزيوليت التخليقي يعد أكثر كفاءة في تيسير المياه عن المعادن الطبيعية. أما المواد الراتينجية (الراتنجات resins) فتتفوق على الزيوليت في تيسير المياه. و الراتنجات المصنوعة بتكثيف الفينولات و الفورمالدهيد تتميز بقدرة فائقة على التبادل الأيوني. و قد تم تطوير أنواع حديثة من الراتنجات و بنفس الخصائص مثل البوليستيرين (polysterene) و الراتنجات الكربوكسيلية (carboxylic resins) .
و تعمل هذه الميسرات بكفاءة أعلى في المياه النظيفة، حيث تتم إزالة المواد الصلبة العالقة من المياه الخام عن طريق الترشيح باستخدام المخثرات (coagulants) ، و إلا فإنها سوف تسد مسام مادة التبادل و تقـلل من كفاءتها. و تتعرض الميسرات أيضاً إلى أضرار بسبب الاحتكاك بالمواد الدقيقة المحمولة في تيار الماء، لذلك يصبح من الضروري إضافة كميات جديدة من المادة المبادلة سنوياً (أو كل سنتين) لاستعادة كفاءة الميسرات . و تختلف الأضرار التي تحدث للميسرات وفقاً لظروف التشغيل ، لذلك ينبغي استشارة موردي الميسرات بخصوص الخسائر المتوقعة وفقاً لظروف التشغيل المختلفة.

لماذا الغازات التي يجب إزالتها من feed water المرجل

الأكسجين هو السبب الرئيسي للتآكل في صهاريج hot well ، feed lines ، feed pumps والمراجل. إذا كان غاز ثاني أكسيد الكربون موجود أيضا ثم ستكون منخفضة الحموضة ، سوف تميل الى ان تكون المياه الحمضية ، وسيتم زيادة معدل التآكل. وعادة ما تآكل من نوع تأليب حيث ، على الرغم من خسارة المعادن قد لا تكون كبيرة ، والتغلغل العميق وانثقاب يمكن أن تحدث في فترة قصيرة. 

ويمكن تحقيق القضاء على الأوكسجين المذاب بواسطة الطرق الفيزيائية أو الكيميائية ، ولكن أكثر عادة عن طريق مزيج من الاثنين معا. 

المتطلبات الأساسية للحد من التآكل والحفاظ على درجة الحموضة في
feed water لا تقل عن 8.5 إلى 9 ، وهو أدنى مستوى ثاني أكسيد الكربون الذي هو غائب ، وإزالة كل آثار الأوكسجين. وعودة من المكثفات من محطة لها تأثير كبير على علاج feed water المرجل -- المكثفات حار وتعامل بالفعل كيميائيا ، وبالتالي كما عاد أكثر من المكثفات ، مطلوب أقل feed water العلاج. 

يمكن أن تصبح المياه المعرضة للهواء مشبع بالأكسجين ، والتركيز سوف تختلف مع درجة الحرارة : ارتفاع درجة الحرارة ، وانخفاض محتوى الاكسجين. 

الخطوة الأولى في العلاج هي
feed water لتسخين المياه لابعاد الأوكسجين. وينبغي أن تكون عادة تدير feed tank المرجل في 85 درجة مئوية إلى 90 درجة مئوية. هذا يترك محتوى الاكسجين من حوالي 2 ملغ / لتر (جزء في المليون). ويمكن تشغيل في درجات حرارة أعلى من ذلك في الضغط الجوي يكون صعبا نظرا لقربها من درجة حرارة التشبع ، واحتمال التجويف في feed pump ، ما لم يتم تثبيت feed tank على مستوى عال جدا فوق feed pump المرجل. 

وإضافة مادة كيميائية الأكسجين الكسح (الصوديوم سلفيت ، الهيدرازين أو التانين) إزالة الأكسجين المتبقي ومنع التآكل. 

هذا هو العلاج الطبيعي لمصنع المراجل الصناعية في المملكة المتحدة. ومع ذلك ، والنباتات التي توجد ، وذلك بسبب حجمها ، وتطبيق المعايير الخاصة أو المحلية ، وسوف تحتاج لخفض أو زيادة كمية المواد الكيميائية المستخدمة. بالنسبة للنباتات التي تحتاج إلى تقليل كمية من العلاج الكيميائي ، فإنه من الشائع استخدام
Dearator مضغوطة.

 
الترتيب العام للضغط Dearator

التشغيل مبادئ Dearator الضغط

إذا كان السائل في درجة حرارة التشبع به ، وذوبان غاز في ذلك هو الصفر ، على الرغم من يجب أن يكون السائل المغلي أو تحريكها بقوة لضمان deaerated تماما. 

ويتحقق هذا في مقطع رأس
Dearator عن طريق كسر الماء إلى قطرات صغيرة وكثيرة ممكن ، وهذه القطرات المحيطة مع جو من البخار. وهذا يعطي مساحة عالية لنسبة الشامل والسريع يسمح بنقل الحرارة من البخار إلى الماء ، والذي يبلغ درجة حرارة البخار بسرعة التشبع. هذا إصدارات الغازات الذائبة ، والتي تقوم بعد ذلك مع بخار الزائد أن يكون تنفيس إلى الغلاف الجوي. (وهذا مزيج من الغازات والبخار في درجة حرارة أقل من التشبع وتنفيس ستعمل حراريا). Deaerated الماء يسقط بعد ذلك إلى قسم تخزين للسفينة. 

يتم الاحتفاظ غطاء من البخار فوق المياه المخزنة لضمان عدم إعادة امتصاص الغازات.

توزيع المياه

ولا بد من كسر في المياه الواردة الى اسفل قطرات صغيرة لزيادة مساحة سطح المياه إلى نسبة الشامل. هذا أمر أساسي في رفع درجة حرارة المياه ، والافراج عن الغازات خلال فترة قصيرة جدا في إقامة القبة deaerator (أو رئيس). 

يمكن كسر المياه تصل الى قطرات صغيرة يمكن تحقيقه باستخدام واحدة من الأساليب المستخدمة داخل بيئة البخار القبة.

 خيارات Dearator مدخل المياه

هناك بالطبع من المزايا والعيوب المرتبطة بكل نوع من توزيع المياه ، بالإضافة إلى التكاليف المترتبة. يقارن الجدول 3.21.1 ويلخص بعض العوامل أهمها :


المقارنة بين الدرج وdeaerators اكتب رذاذ

نظم الرقابة

التحكم في المياه

ويستخدم صمام التحكم تحوير للحفاظ على مستوى المياه في قسم تخزين للسفينة. مطلوب مراقبة تحوير لإعطاء ظروف التشغيل مستقرة ، كما inrush المفاجئ للماء بارد نسبيا مع نظام الرقابة على / قبالة التحكم في المياه يمكن أن يكون لها تأثير عميق على السيطرة على ضغط ، وكذلك قدرة deaerator على الاستجابة بسرعة للتغيرات في الطلب . 

مطلوب منذ سيطرة تحوير ، لا يمكن تحقيق مستوى نوع السعة المطلوبة توفير إشارة تناظرية لمنسوب المياه.

البخار السيطرة

صمام التحكم تحوير ينظم العرض بخار. هذا الصمام هو منظم عبر وحدة تحكم الضغط للحفاظ على الضغط داخل السفينة. دقة التحكم في ضغط مهم جدا لأنه هو الأساس لضبط درجة الحرارة في deaerator ، ولذلك يتصرف بسرعة ، سوف تستخدم هوائيا دفعتها صمام التحكم. ملاحظة : يمكن استخدام الطيار السيطرة على ضغط صمام تعمل على أصغر التطبيقات ، ويمكن استخدامه ذاتيا تتصرف الحجاب الحاجز صمام التحكم دفعتها عندما يتم ضمان أن تكون حمولة ثابتة إلى حد ما. 

الحقن بالبخار قد يحدث في قاعدة الرأس ، وتتدفق في الاتجاه المعاكس للمياه (تدفق العداد) ، أو من الجانبين ، وعبور لتدفق المياه (عبر تدفق). أيهما الاتجاه الذي يأتي من البخار ، والهدف هو توفير أقصى قدر من الإثارة والاتصال بين التدفقات البخار والمياه لرفع المياه إلى درجة الحرارة المطلوبة. 

يتم حقن البخار عن طريق تقديم الناشر التوزيع الجيد للبخار داخل قبة
deaerator

البخار واردة يوفر أيضا :

  • وسيلة لنقل الغازات الى تنفيس الهواء
  • إن وجود غطاء من البخار المطلوبة أعلاه المياه المخزنة deaerated

Deaerator القدرات الجوية التنفيس

في الدروس السابقة ، فقد نقلت feed water درجات الحرارة النموذجية في حوالي 85 درجة مئوية ، وهو الحد الأقصى لقيمة عملية لتشغيل المراجل feed tank تنفيس في الضغط الجوي. وكما هو معروف أن المياه على 85 درجة مئوية تحتوي على حوالي 3.5 غرام لكل كيلوغرام من الاوكسجين من المياه 000 1 ، وأنه هو الأكسجين الذي يسبب أضرار كبيرة في نظم البخار لسببين رئيسيين. الأولى ، فإنه يرفق نفسه إلى داخل الأنابيب والأجهزة ، وتشكيل أكاسيد والصدأ ، وحجم ، وثانيا ، فإنه يتحد مع ثاني أكسيد الكربون لإنتاج حمض الكربونيك ، والتي لها قابلية طبيعية لتآكل المعدن عموما وحل الحديد. وبسبب هذا ، فمن المفيد لإزالة الأكسجين من feed water المرجل قبل أن يدخل المرجل. والضغط المنخفض والضغط المتوسط ​​النباتية المتوفرة مع البخار المشبع من نوع المراجل قذيفة تعمل بسعادة تماما مع feed tank مصممة بعناية ادراج شركة deaerator الغلاف الجوي (المشار إليها بوصفها deaerator نصف). تتم إزالة أي آثار متبقية من الاوكسجين عن طريق المواد الكيميائية ، وهذه هي عادة الاقتصادية لهذا النوع من النبات بخار. ومع ذلك ، لأنبوب مياه الغلايات عالية الضغط ومحطة معالجة البخار البخار ، فمن الأهمية بمكان أن يتم الحفاظ على مستوى الأوكسجين في مياه الغلايات أقل بكثير (عادة أقل من سبعة أجزاء من البليون -- 7 جزء في البليون) ، وذلك لأن معدل هجوم بسبب الغازات الذائبة تزداد بسرعة مع ارتفاع درجات الحرارة. لتحقيق مثل انخفاض مستويات الأكسجين ، ويمكن استخدام deaerators مضغوطة. 

إذا كانت ساخنة
feed water إلى درجة حرارة التشبع من 100 درجة مئوية في feed tank الغلاف الجوي ، وكمية الأوكسجين التي عقدت في الماء يمكن أن يكون نظريا الصفر ، على الرغم من الناحية العملية ، فمن المرجح أن كميات صغيرة من الأكسجين ستبقى. ذلك هو الحال أيضا أن الخسارة من البخار من feed tank تنفيس ستكون مرتفعة جدا وغير مقبول من الناحية الاقتصادية ، وهذا هو السبب الرئيسي ويفضل deaerators الضغط لمحطة الضغط العالي التي تعمل عادة فوق 20 شريط ز 

تم تصميم
deaerator غالبا ما يضغط لتعمل في بار ز 0.2 ، أي ما يعادل درجة حرارة التشبع من 105 درجة مئوية ، وعلى الرغم من أن لا تزال كمية معينة من بخار أن تضيع في الغلاف الجوي عن طريق تنفيس الاختناق ، فإن الخسارة ستكون أقل بكثير من تلك من feed tank تنفيس. 

ليس الأوكسجين فقط التي تحتاج إلى تنفيس ، وسيتم رفض أخرى غير قابلة للتكثف الغازات في نفس الوقت. سوف
deaerator بالتالي تنفيس الأخرى المكونة من الهواء والنيتروجين في الغالب ، جنبا إلى جنب مع كمية معينة من بخار. ويترتب على ذلك أن نسبة الرفض من الهواء من الماء يجب أن يكون أعلى قليلا من 3.5 غرام لكل كيلوغرام من الاوكسجين من المياه 000 1. في الواقع ، وكمية من الهواء في الماء عند 80 درجة مئوية تحت ظروف الجو هو 5.9 جرام لكل 000 كجم من الماء 1. لذا ، لا بد من رفض 5.9 غرام لكل كيلوغرام من الهواء 000 1 من المياه لضمان ان يتم الافراج عن المبلغ المطلوب من 3.5 غرام من الأوكسجين. لأن هذا الهواء يختلط مع البخار في الفضاء فوق سطح الماء ، والطريقة الوحيدة التي يمكن رفضه من deaerator هي الافراج في وقت واحد من البخار. 

ويمكن تقدير كمية بخار / خليط الهواء والتي تحتاج إلى أن يكون صدر من خلال النظر في الآثار المترتبة على قانون دالتون للضغوط الجزئية وقانون هنري. 

النظر في إمكانية تركيب
deaerator. قبل التثبيت ، ويتم تغذية مصنع المراجل التي تعمل من feed water feed tank تنفيس عند 80 درجة مئوية. وهذا يعني بالضرورة أن كل 1 000 كيلوغرام من feed water يحتوي 5.9 غرام من الهواء. سوف deaerator المقترحة تعمل على الضغط من شريط ز 0.2 ، والتي تتطابق مع درجة حرارة التشبع من 105 درجة مئوية. يفترض ، بالتالي ، أن يكون الدافع وراء كل الهواء من الماء في deaerator. ويترتب على ذلك من تنفيس يجب أن نرفض 5.9 غرام لكل كيلوغرام من الهواء 000 1 من القدرات feed water

نعتبر أن يطلق سراحه في الهواء من الماء يمزج مع البخار فوق سطح الماء. على الرغم من ضغط التشغيل
deaerator هو 0.2 بار ز (1.2 بار) ، ودرجة الحرارة للخليط البخار / الهواء قد يكون فقط 100 درجة مئوية. 

الضغط الكلي في
deaerator = 1.2 بار 

درجة حرارة البخار في
deaerator = 100 درجة مئوية 

100 درجة مئوية يناظر ضغط التشبع من 1 بار = 1.013 25
ATM a


لذا ، من قانون دالتون : -- 

إذا كانت تملأ الفضاء بخار في
deaerator مع البخار النقي ، فإن ضغط البخار تكون 1.2 ألف شريط كما حيز البخار ودرجة الحرارة الفعلية من 100 درجة مئوية ، والضغط الجزئي بسبب البخار هو فقط 25 ألف شريط 1،013 

الضغط الجزئي الناجم عن الغازات غير مكثف (الهواء) وبالتالي فإن الفرق بين هذين الرقمين = 1،2-1،013 25 = 0.186 75 ألف شريط

ولكن :

  • لأنه لا توجد طريقة سهلة لقياس درجة الحرارة بدقة التفريغ ؛
  • لأن ليس هناك سوى فارق صغير بين الضغط deaerator والضغط الجوي ؛
  • لأن معدلات تنفيس صغيرة جدا ،

نادرا ما واجه... هو آلية التنفيس التلقائي على تنفيس الأنابيب deaerator ، فإن المهمة عادة ما يتم إنجازه من قبل تعديلها يدويا الكرة صمام ، صمام إبرة ، أو لوحة الفوهة. 

من المهم أيضا أن نتذكر أن الهدف الرئيسي ل
deaerator هو إزالة الغازات. فمن الأهمية بمكان ، بالتالي ، أن فصل من مرة واحدة ، هي إزالة هذه الغازات في أسرع وقت ممكن ، وقبل أن تكون هناك أي فرصة لإعادة entrainment

على الرغم من أن نظرية تشير إلى أن هناك حاجة 22،4 غراما من بخار / خليط الهواء للطن الواحد من قدرة
deaerator ، في الممارسة العملية وهذا هو المستحيل مراقبة أو تنظيم بنجاح. 

ولذلك ، استنادا إلى الخبرة العملية ، وسوف مصنعين
deaerator تميل إلى التوصية معدل تنفيس ما بين 0.5 و 2 كيلوغرام من البخار / خليط الهواء لكل 000 كجم 1 / ح القدرات deaerator أن تكون في الجانب الآمن. يقترح أن تؤخذ المشورة الصانع deaerator بشأن هذه المسألة. 

وهناك طريقة نموذجية من السيطرة على معدل تنفيس لاستخدام البخار واجب
DN20 الكرة صمام الضغط على تصنيف من مناسبة ، والتي يمكن أن تكون آمنة في حالة فتح جزء.

التين.3.21.3
داخل قبة deaerator

معايير التشغيل النموذجي لضغط deaerator

المعلومات التالية هو نموذجي وأي تثبيت الفعلية قد تختلف عن بعد في عدد من الطرق لتناسب الاحتياجات الفردية لهذا النبات :

  • ضغط التشغيل ستكون عادة ما يقرب من 0.2 بار (3 رطل) ، والذي يعطي درجة حرارة التشبع من 105 درجة مئوية (221 درجة فهرنهايت).
  • وسوف السفينة تحتوي على ما بين 10 و 20 دقيقة لتخزين المياه في الغلاية على التحميل الكامل.
  • ينبغي الضغط على إمدادات المياه deaerator أن لا يقل عن 2 بار لضمان توزيع جيد في فوهة.

هذا يعني إما الضغط الخلفي على مصائد البخار في المصنع أو الحاجة للعودة المكثفات التي يتم ضخها.

  • وضغط البخار العرض للضغط صمام التحكم تكون في شريط 5-10 النطاق.
  • والحد الأقصى الهبوط على deaerator تكون 5:01 تقريبا.
  • في أسفل هذا flow rates من هذه العملية ، قد يكون هناك ضغط كاف لإعطاء ترذيذ جيدة مع فوهة رذاذ الماء أو الموزعين النوع.
  • ويمكن التغلب على ذلك عن طريق وجود أكثر من قبة واحدة على حدة. فإن القدرة الكلية للقباب تكون مساوية لتصنيف المراجل ، ولكن قد يكون اغلاق واحد أو أكثر من أسفل القباب في أوقات انخفاض الطلب.
  • قد تكون هناك حاجة التدفئة في منطقة تخزين للسفينة لظروف بدء العمل ، وهذا قد يكون الى جانب لفائف أو الحقن المباشر.
  • ومع ذلك ، نوع من النباتات الأكثر احتمالا أن تكون مزودة deaerator الضغط يكون في عملية مستمرة والمشغل قد تنظر في انخفاض الأداء أثناء بدء الباردة بين الحين والآخر قد يكون مقبولا.

فإن تصميم السفن ، ومواد وتصنيع والبناء ، والاعتماد يكون في الامتثال لمعايير معترف بها ، على سبيل المثال : في المملكة المتحدة هو معيار PD 5500

وعادة ما يكون التوازن الحراري على
deaerator (ولكن ليس دائما) حسبت على زيادة قدرها 20 درجة مئوية في حرارة المياه الواردة. 

فمن الطبيعي للمياه في 85 درجة مئوية إلى أن يتم توفير ل
deaerator. إذا كانت درجة حرارة المياه الواردة أعلى بكثير من هذا ، فإن كمية البخار اللازمة لتحقيق مجموعة ضغط أقل. هذا ، بدوره ، يعني أن صمام البخار وخنق أسفل وflow rate البخار قد تكون منخفضة للغاية لضمان الانتشار السليم في فوهة بخار. 

هذا قد يوحي أنه ، مع نسبة عالية جدا من المكثفات التي يتم إرجاعها ، قد تكون هناك حاجة لاتخاذ بعض الإجراءات البديلة المناسبة ل
deaeration تحدث. 

في هذه الحالة ، قد تكون محسوبة على التوازن الحراري
deaerator باستخدام معايير مختلفة ، أو deaerator قد تعمل على ارتفاع الضغط.

التكلفة والتبرير

كلفة

ليس هناك تكلفة الطاقة الإضافية المرتبطة تشغيل deaerator ، والحد الأقصى من البخار المصدرة للمصنع هو نفسه مع أو بدون deaerator ، لأن بخار يستخدم لزيادة درجة حرارة feed water يأتي من ارتفاع انتاج المرجل. 

ولكن :

  • وسوف يكون هناك فقدان بعض الحرارة من deaerator (سيتم ذلك من خلال التقليل من العزل السليم).
  • هناك تكلفة إضافية لتشغيل مضخة نقل بين feed tank وdeaerator و.
  • فقد بعضا من قوته مع غازات غير قابلة للتكثف تنفيس.

مبرر

الأسباب لاختيار مبدأ deaerator الضغط هي :

  • للحد من مستويات الأكسجين إلى أدنى حد ممكن (<20 أجزاء لكل مليار دولار) من دون استخدام المواد الكيميائية. وهذا التآكل في القضاء على نظام تغذية المرجل.
  • ويمكن تحقيق وفورات في التكاليف بالنسبة للمواد الكيميائية -- هذه الحجة تصبح سارية المفعول بشكل متزايد على نوع كبير المراجل أنبوب مياه حيث flow rates مرتفعة ، وانخفاض مستويات TDS (<1 000 جزء في المليون) يجب أن يتم الاحتفاظ بها في feed water المرجل.
  • واضاف المواد الكيميائية للسيطرة على محتوى الاكسجين من الماء المرجل سوف تتطلب تهب نفسها باستمرار. لذلك عن طريق الحد من / القضاء على إضافة مواد كيميائية ، سيتم تخفيض معدل تفوير مع وفورات في التكاليف المرتبطة بها.
  • لمنع التلوث حيث البخار هو على اتصال مباشر مع المنتج ، على سبيل المثال : المواد الغذائية أو لأغراض التعقيم.

Deaerator توازن حراري

لتمكين تصحيح لتصميم النظام وحجم العرض صمام البخار ، فمن المهم أن نعرف كم هو بحاجة لتسخين البخار deaerator. ويستخدم هذا البخار لتسخين feed water من درجة الحرارة المعتادة من ذوي الخبرة قبل تثبيت deaerator إلى درجة الحرارة المطلوبة للحد من الأوكسجين المذاب الى المستوى المطلوب. 

يحسب
flow rate البخار اللازم عن طريق توازن الكتلة / الحرارة. التوازن الشامل / الحرارة يعمل على مبدأ أن المبلغ الأولي للحرارة في feed water ، بالإضافة إلى الحرارة المضافة بواسطة كتلة بخار حقن يجب يساوي المبلغ النهائي للحرارة في feed water بالإضافة إلى كتلة من البخار الذي تكثفت خلال عملية . 

2.11.3 المعادلة هي معادلة توازن الكتلة / الحرارة المستخدمة لهذا الغرض.

المعادلة 2.11.3

حيث :

=

الحد الأقصى لانتاج المرجل في درجة الحرارة feed water الأولي (كغ / ح) -- وهذا هو المرجل "من ووفي' س الرقم المرجل عامل التبخر.

 ق

=

ليتم حقنه الشامل من البخار (كغم / ساعة)

ح 1

=

المحتوى الحراري للمياه في درجة الحرارة الأولية (كج / كلغ)

ح 2

=

المحتوى الحراري للمياه على درجة الحرارة المطلوبة (كج / كلغ)

ح ز

=

المحتوى الحراري للبخار تزويد صمام التحكم (كج / كلغ) -- ملاحظة : إذا تم محمص البخار العرض ، وهذه القيمة هي مجموع الحرارة في البخار (ح).

لحساب flow rate البخار اللازم ، ونقلها إلى حل المعادلات 2.11.4 ل  ق ، وتصبح المعادلة 3.21.1.

المعادلة 3.21.1

هناك حاجة مثلا 3.21.1 تحديد كمية البخار لتسخين deaerator

التين.3.21.4
التثبيت ضغط نموذجي deaerator

ويتم تغذية مصنع المراجل القائمة مع feed water عند درجة حرارة 85 درجة مئوية. نظرا لارتفاع تكاليف العلاج الكيميائي ، فمن المقترح أن يتم تثبيت deaerator الضغط ، التي تعمل في بار ز 0.2 إلى رفع درجة الحرارة إلى 105 feed water درجة مئوية ، والحد من ذوبان الأكسجين إلى كميات تقاس عادة في أجزاء من البليون. البخار ، وينتج في المرجل في شريط ز 10 ، لاستخدامه كعامل التدفئة.إذا كان "من ووفي" تصنيف النبات المرجل هو 10 طن / ساعة ، وتحديد flow rate من البخار اللازم لتدفئة deaerator.

حيث : 

المرجل "من ووفي" تصنيف ح / 10 = 000 كجم 

درجة الحرارة الأولية
feed water = 85 درجة مئوية 

السخانة
feed water الأولي في 85 درجة مئوية (ح 1) = 356 كج / كلغ (من جداول البخار) 

مرجل الضغط = 10 شريط ز 

المحتوى الحراري للبخار مشبع في شريط ز 10 (ح ز) = 2 781 كج / كلغ

قبل أن تتمكن من إجراء أية عمليات حسابية لتقدير حجم deaerator ، فمن المهم معرفة الحد الأقصى لمتطلبات feed water احتمالا. ويتحدد ذلك من خلال حساب المرجل (ق ') أقصى معدل تبخير مفيدة ، والذي بدوره يعتمد على درجة الحرارة feed water الأولي. تم العثور على أقصى معدل تبخير بواسطة تحديد عامل التبخر المرجل. 


الأكسجين هو السبب الرئيسي من التآكل في خزانات hot well ، feed lines ، feed pumps والمراجل. إذا كان ثاني أكسيد الكربون موجود أيضا ثم الرقم الهيدروجيني سيكون منخفضا ، فإن الماء تميل إلى أن تكون حمضية ، وسيتم زيادة معدل التآكل. وعادة ما تآكل من النوع تأليب حيث ، على الرغم من أن فقدان المعادن قد لا تكون كبيرة ، والاختراق العميق ويمكن أن يحدث ثقب في فترة قصيرة.

ويمكن تحقيق القضاء على الأوكسجين المذاب بالطرق الكيميائية أو الفيزيائية ، ولكن أكثر عادة عن طريق مزيج من الاثنين معا. 

المتطلبات الأساسية للحد من التآكل والحفاظ على الماء المغذي في الرقم الهيدروجيني لا تقل عن 8،5 حتي 9 ، وهو أدنى مستوى في ثاني أكسيد الكربون الذي تغيب ، وإزالة كل آثار من الأكسجين. عودة من المكثفات من المصنع سيكون له أثر كبير على علاج الماء المغذي المرجل -- المكثفات حار والمعالجة كيميائيا بالفعل ، وبالتالي أكثر والمكثفات يتم إرجاعها ، وأقل من المطلوب معالجة الماء المغذي.

يتعرض الماء إلى الهواء يمكن أن تصبح مشبعة مع الأكسجين ، والتركيز سوف تختلف مع درجة الحرارة : فكلما ارتفعت درجة الحرارة ، وانخفاض محتوى الاكسجين. 

الخطوة الأولى في العلاج هي الماء المغذي لتسخين المياه لابعاد الأوكسجين. وينبغي أن يكون نموذجيا يدار feed tank المرجل عند درجة حرارة 85 حتي 90 درجة مئوية. هذا يترك محتوى الاكسجين من حوالي 2 ملغ / لتر (جزء في المليون). هذه العملية يمكن أن عند ارتفاع درجات الحرارة من هذا في الضغط الجوي يكون صعبا بسبب القرب الشديد لدرجات الحرارة واحتمال تشبع من التجويف في feed pump ، ما لم يتم تثبيت feed tank على مستوى عال جدا فوق feed pump المرجل.

وسيكون لإضافة مادة كيميائية الأكسجين الكسح (سلفيت الصوديوم ، الهيدرازين أو التانين) إزالة الأكسجين المتبقية ومنع التآكل.

هذا هو العلاج الطبيعي لمصنع المراجل الصناعية في المملكة المتحدة. ومع ذلك ، والنباتات التي توجد ، وذلك بسبب حجمها ، وتطبيق المعايير الخاصة أو المحلية ، والحاجة إلى خفض أو زيادة كمية المواد الكيميائية المستخدمة. بالنسبة للنباتات التي تحتاج إلى تقليل كمية المعالجة الكيميائية ، ومن الممارسات الشائعة لاستخدام deaerator الضغط.

&nbs

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 5052 مشاهدة
نشرت فى 25 يونيو 2012 بواسطة abastaher

<!--<!--

<!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:right; mso-pagination:widow-orphan; direction:rtl; unicode-bidi:embed; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} p {mso-margin-top-alt:auto; margin-right:0cm; mso-margin-bottom-alt:auto; margin-left:0cm; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} span.apple-converted-space {mso-style-name:apple-converted-space;} @page Section1 {size:595.3pt 841.9pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0; mso-gutter-direction:rtl;} div.Section1 {page:Section1;} -->

<!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} -->

 

<!--[endif]-->


جهاز السوفتنر هو عباره عن منظومة  يستخدام مادة الرزن لإزالة الايونات الموجبة الموجودة في مياه ب
نستخدم المحلول الملحيNacl لإعادة تنشيط مادة الرزن0
المحتويات ومواصفاتها
ــــــــــــــــــــــــــــــــــــــــــ
أعمدة التبادل ألايوني 
من الفايبر كلاص أو البليت
المغلون المطلي بمادة الايبوكسي
 
خزان الملح مع الخلاط 
مضخة سحب الملح او سحب الملح عن طريق الفاكيوم 
 
شبكة الغسل وصمامات التحكم

أما بالنسبة للجهاز فهو عبارة عن خزان يحتوي كمية من الرزن ( وهو عبارة عن جزيئات متصلة فيها ذرات من الصوديوم) في حال مرور الماء العسر خلال الرزن سيتم استبدال ذرات الصوديوم بذرات الكاليسوم والمغانيسوم وهي المسمى بأملاح العسرة وذلك لأنها غير ذائبة في الماء بل تترسب مما تسبب مشاكل خاصة في الأنظمة الحرارية مثل جهاز الستيم كذلك تترسب على الجلد فحين يتم استبدالها بذرات الصوديوم الذائب نجد حل لهذه المشاكل. علما أن هذا الرزن يصل إلى حالة إشباع بعد مدة زمنيه فلذلك نعمل له إعادة تنشيط باستخدام ملح الصوديوم وتتم هذه العملية اتوماتيكيا
إذن باختصار يتكون جهاز السوفتنر من 
(
رأس التحكم )(والذي يتحكم بعملية التنشيط)
خزان الرزن (والذي يمر الماء من خلاله ويتم فيه تبادل ذرات الكاليسيوم والمغنيسيوم الموجدوة في المياه العسرة بذات الصوديوم المرتبطة بالرزن))
(
خزان الملح)( والذي يأخذ الملح منه خلال عملية التنشيط)

يؤثر الكلور الموجود في الماء على مادة الرزن وذلك انه يقوم بتكسير الرزن ويعتبر الكلورين عدو الرزن الاول

1غرين بالغالون الواحد = 17.1 ملليغرام باللتر الواحد = 17.1جزء بالمليون

الرجاء ما تاثير الاملاح الغير مذابة على الانسان وكيف نتخلص من الصوديوم في الماء

سؤال فني اذا الكلور هوا عدو الرزين الاول لماذا يتم تنشيطه بملح الطعام nacl ???????


طريقة فحص الرزن الموجب والسالب 
يتم أخذ حجم 10 مللتر رزن 
يتم عمل تنشيط كامل ( الموجب بحامض HCl تركيز 4 % والسالب بالصودا الكاوية تركيز 4 % )
بعد الشطف والتأكد من شطف الحامض بواسطة نترات الفضه . والصودا الكاوية بكاشف الفينولفثالين يتم امرار محلول كلوريد الصوديوم 160 مللتر من خلال الرزن ببطء
يؤخذ الناتج من الرزن الموجب ويعاير بمحلول 1 عياري من الصودا الكاوية 
يؤخذ الناتج من الرزن السالب ويعاير بمحلول 1 عياري من حامض الهيدروكلوريك 
ملاحظه يستخدم كاشف الفينول فثالين للمعايرة 
بعد الانتهاء من اضافة المحلول الملحي يضاف 30 مللتر اسيتون على الرزن لطرد كامل كمية المحلول الملحي
يتم حساب المللترات المكافئة الناتجة من عمليتي المعايرة وتكون هي نتيجة الكفاءه للرزن بعد القسمة على 10 مللتر طبعا حيث تكون النتيجة النهائية مللترمكافئ لكل سم3 من الرزن 
وللعلم فقط كفاءة الرزن الموجب تكون اكثر من 2.5 بينما كفاءة الرزن السالب اكثر من 1 اي اذا قلت الكفاءه عن هذه القيم يكون الرزن تالف 
هذه الطريقه مختصرة وسريعه

 

abastaher

WWW.abastaher.com

  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 2622 مشاهدة
نشرت فى 9 يناير 2012 بواسطة abastaher

تصنف المراجل البخاريه بالمقارنة  لضغط البخار المنتج
low pressure boilers -1
مراجل الضغط الواطيء حيث يكون ضغط البخار المنتج اقل من ( 100 psi ) .
Medium pressure boilers -2 
مراجل الضغط المتوسط حيث يكون ضغط البخار المنتج (100 – 600 psi).
High pressure boilers -3
مراجل الضغط العالي حيث يكون ضغط البخار المنتج اكثر من (600 psi).
تقسم المراجل البخاريه الى نوعين رئيسيين:- 
fire tube boiler-1
ويكون هذا النوع من المراجل محدود في طاقته الانتاجيه (20000 lb/hr ) وضغط لا يتجاوز (200 psi ) ويكون البخار المنتج بخار مشبع (saturated steam ) و يمتاز بسهولة النقل والنصب و هذا النوع من المراجلاشبه بالمبادلة الحرارية حيث يتكون المرجل من وعاء اسطواني Shellتحوي بداخلها على مجموعة من الانابيب Tube يتم إمرار غازات الاحتراق خلال الأنابيب ويمر الماء والبخار المتكون خلال Shellوان هذا النوع من المراجل fire tube لا تحتاج الى مواصفات ماء عالية وهناك أنواع مختلفة من هذه المراجل تختلف من ناحية التصميم ومعظم هذه المراجل يتم تصنيعها على شكل (packaged unit ) وتكون جاهزة للنصب مباشرة 

water tube boiler -2 
في هذا النوع من المراجل يتم تحويل الماء الى بخار داخل الانابيب بينما يكون مرور غازات الاحتراق على السطح الخارجي للانابيب وفي هذا النوع من المراجل نحتاج الى مواصفات ماء عاليه demineralized waterكما هو الحال في مراجل طاقة (2) 
ويتميز هذا النوع من المراجل بانتاج كميات كبيرة من البخارقد تصل الى اكثر من 1000000Ib/hr وبضغط اعلى من النوع الاول بسبب كبر المساحة السطحية المعرضة للحرارة وهذا النوع هو الاكثر شيوعا والمستخدم في مصفى الدوره 

أنواع water tube boiler
Boiler type (D) *
وهذا النوع من المراجل يحتوي على وعائين حيث يكون وعاء البخارsteam drum مباشرة فوق وعاء الماءwater drum ويربط بينهما الانابيب الصاعده (rises ) والانابيب النازلة (down comers) وتكون المشاعل (burners ) الى الجانب من الوعائين وتوجد هناك انابيب رئيسية تخرج من وعاء الماء حيث تتفرع منها الانابيب الصاعدة التي تكون جدار الفرن وترتبط هذه الانابيب من الاعلى بانابيب رئيسية اخرى تصب في وعاء البخار وهذا النوع هو المستخدم في مصفى الدوره كما في الشكل (2-3A) . 
Boiler type (O) *
وهو يتكون من وعائين ايضا ويكون هذان الوعائين متوازيان مع اتجاه المشاعل (burners) وتربط بين الوعائين الانابيب النازلة والانابيب الصاعدة حيث تكون الاخيرة الجزء الاكبر من جدار الفرن.
Boiler type (A) *
ويتكون هذا النوع من المراجل من وعاء كبير للبخار ووعائين صغيرين للماء وتربط الانابيب الصاعدة والانابيب النازلة هذه الاوعية ببعضها مكونة حرف (A ) حيث تكون هذه الانابيب جدار الفرن ويكون هذا النوع من المراجل حساس لمستوى الماء في الانابيب ففي حالة اجراء عملية البزل المتقطع بصورة غير صحيحة فانه سيؤدي الى تلف انابيب المرجل
ان جريان الماء والبخار في المراجلwater tube boiler) ) يسمى التدوير (circulation ) 
وهناك نوعين من التدوير (circulation ) :-
-1التدوير الطبيعي ( natural circulation ) :-
حيث ان التدوير يحدث نتيجة الفرق في الكثافة بين الماء والبخار حيث ان مزيج الماء والبخار في الأنابيب المولدة (generating tubes ) تكون كثافته اقل من الماء في الانابيب الاخرى ( non generating tubes ) وعلى هذا الاساس يكون جريان مزيج الماء والبخار إلى الأعلى في الأنابيب المولدة ويكون جريان الماء الى الاسفل في الأنابيب الأخرى 

2-  التدوير القسري (forced circulation ) :-
ويحدث التدوير في هذا النوع من المراجل باستخدام مضخات حيث تقوم هذه المضخات باستلام الماء من الانابيب النازلة (down comers ) لتدفعها مرة أخرى إلى الأنابيب الصاعدة (Risers ) 
وفي كلا النوعين من التدوير يجب ان يكون هناك جريان مستمر للماء خلال الانابيب حيث يعمل مزيج الماء والبخار الموجود في الانابيب على تبريد سطح الانابيب نظرا للفرق في درجات الحرارة بين السطح الخارجي المعرض لنواتج الاحتراق والسطح الداخلي الذي يحتوي على هذا المزيج وفي حالة حدوث أي خلل في عملية مرور الماء والبخار داخل الأنابيب فانه سيؤدي إلى ارتفاع درجة حرارة هذه الأنابيب وبالتالي فشلها . 
<!--

abastaher

WWW.abastaher.com

  • Currently 15/5 Stars.
  • 1 2 3 4 5
5 تصويتات / 1399 مشاهدة
نشرت فى 20 أكتوبر 2011 بواسطة abastaher

عباس طاهر صالح

abastaher
اصلاح وصيانة وتركيب الغلايات البخارية ووحدات معالجة المياة »

عباس لصيانة واصلاح وتوريد وتركيب الغلايات البخارية ووحدات معالجة المياة

ابحث

تسجيل الدخول

عدد زيارات الموقع

449,714

www.abastaher.com

عباس لصيانة واصلاح وتوريد وتركيب الغلايات البخارية ومعالجة المياة ومعالجة مياة الصرف الصناعى