"استخدام كمبوست النبات الملقح ببعض الكائنات الحية الدقيقة كبديل جزئي للأسمدة النيتروجينية المعدنية في كروم العنب الكريمسون سيدلس"
محمود رياض جاد الكريم محمد أحمد حسين
قسم البساتين – كلية الزراعة – جامعة سوهاج – سوهاج – مصر .
فيصل فاضل أحمد علاء الدين محمد مدين
قسم البساتين - كلية الزراعة – جامعة المنيا – المنيا – مصر .
تم تسميد كرمات العنب الكريمسون سيدلس بكمية النيتروجين المناسبة له (80 جرام/ السنة) إما بالكامل فى الصورة الغير عضوية أو بنسبة 25 إلى 75 % نيتروجين غير عضوي جنباً على جنب مع كمبوست النبات الملقح بأحد السلالات الميكروبية الآتية:
باسليس بوليمكسا – الأكتينوميسيس ، الأسبيرولينا بلانتنسيس والكائنات الحية الدقيقة الفعالة والازوسبيرليم ، الباسليس سيركيولانس والأزوتوباكتر فلندياى وذلك خلال موسمي 2011 ، 2012
تركزت الدراسة على اختبار تأثير معاملات النيتروجين هذه على النمو ، الحالة الغذائية للكرمات والإثمار فى هذه الكرمات.
أشارت نتائج الدراسة إلى أن تقليل النسبة المئوية المستخدمة من النيتروجين الغير عضوي من 100 إلى 50 % من الكمية الموصى بها من النيتروجين وفى نفس الوقت زيادة النسبة المئوية المستخدمة من كمبوست النبات المزود ببعض الكائنات الحية الدقيقة يؤدى إلى تحسين تدريجي فى صفات طول النمو الرئيسي ومساحة الورقة ومحتوى الورقة من النيتروجين والنسبة المئوية لعقد الحبات وكمية المحصول ووزن العنقود والحبة ، والنسبة المئوية للثمار ذات اللون الأحمر. أما محتوى الورقة من الفوسفور والبوتاسيوم والماغنيسيوم والصبغات النباتية والنسبة المئوية للمواد الصلبة الذائبة الكلية والسكريات والنسبة ما بين المواد الصلبة الذائبة الكلية إلى الحموضة ونشاط إنزيم الديهيدروجينيز وكمية غاز ك أ2 المنبعثة والعدد الكلى لبكتريا فى التربة فقد كان يميل إلى الزيادة بتقليل النسبة المئوية المستخدمة من النيتروجين الغير عضوي من 100 إلى 25 % وفى نفس الوقت زيادة النسبة المئوية المستخدمة من الكمبوست المزود بالكائنات الحية الدقيقة من صفر إلى 75 % وكان تلقيح كمبوست النبات بالأكتينوميسيس ، الباسليس بوليمكسا ، الأسبيرولينا بلانتنسيس ، الباسليس سيركيولانس والازوسبيرليم والأزوتوباكتر فلندياى والكائنات الحية الدقيقة الفعالة مرتبة ترتيباً تنازلياً فعالاً جداً فى هذا الصدد.
كانت هناك تأثيرات سلبية على الإثمار فى الكرمات عند استخدام الصورة الغير عضوية للنيتروجين بنسبة مئوية تقل عن 50 %.
يقترح تسميد كرمات العنب الكريمسون سيدلس بالنيتروجين بمعدل 80 جرام للكرمة في السنة في صورة 50 % نيتروجين غير عضوي جنباً إلى جنب مع استخدام كمبوست النبات المزود بالكائنات الدقيقة الحية الفعالة (EM) وذلك لأجل تحسين المحصول كماً ونوعاً وفى نفس الوقت الحد من مشكلة عدم تجانس تلوين العناقيد وكذلك تلوث الحبات بالنيتريت.
APPLICATION OF PLANT COMPOST ENRICHED WITH SOME MICROORGANISMS AS A PARTIAL REPLACEMENT FOR MINERAL N FERTILIZERS IN CRIMSON SEEDLESS GRAPEVINES
BY
Mahamoud R. Gad El- Kareem*; Faissal F. Ahmed**; Mohamed A. Hussein* and Alaa E. M. Madian**
* Hort. Dept. Fac. of Agric. Souhag Univ. Egypt.
** Hort Dept. Fac. of Agric. Minia Univ. Egypt.
ABSTRACT
Crimson seedless grapevines were fertilized with the suitable N (80 g N/ vine/ year) either completely via inorganic form or at 25 to 75 % inorganic N plus plant compost enriched with one of the following seven microorganism strains namely Bacillus polymyxa, actinomyces, Spirulina plantensis, EM, Azospirillum sp, Bacillus circulanse and Azotobacter vinelandii during 2011 and 2012 seasons. The study focused on examining the effect of these N management on growth, vine nutritional status and fruiting of the vines.
Results showed that reducing inorganic N percentage from 100 to 50 % out of the suitable amount of N and at the same time increasing the percentages of the enriched plant compost with microorganisms caused a gradual promotion on main shoot length, leaf area, leaf N %, berry setting %, yield and cluster weight. Berry weight, red coloured berries %, leaf content of P & K, Mg, plant pigments, T.S.S %, total sugars %, T.S.S/ acid, dehydrogenase activity, the amount of CO2, total counts of bacteria in the soil tended gradually to enhance with reducing inorganic N from 100 to 25 % and at the same time enhancing the enriched compost percentages from 0.0 to 75 %. Enriching plant compost with actinomyces, Bacillus polymyxa, Spirulina plantensis, Bacillus circulanse, Azospirillum sp, Azotobacter vinelandii and EM, in ascending order was very effective in this respect. Negative effects on fruiting were observed with using inorganic N at percentages lower than 50 % of the suitable N.
Fertilizing Crimson seedless grapevines with N at 80 g/ vine/ year via 50 % inorganic N plus 50 % compost enriched with EM was suggested to be beneficial for improving yield quantitively and qualitatively and at the same time reducing the problem of uneven colouration of clusters and pollution of the berries with nitrite.
INTRODUCTION
Crimson seedless grapevine cv. is fast becoming the preferred red seedless grape in supermarkets worldwide because of their exceptional shelf life. Berries of such cv. have a very distinctive, sweet, juice, flavour and elongated and pal pink berries. Also, grapes have a higher sugar content, with half as glucose and half as fructose. Grapes also, contain adequate amounts of potassium, vitamin A and dietary fiber (Passingham, 2004). Such grapevine cv. is considered a prime and popular grape cv. successfully grown under Egypt conditions. It pruns with cane system. The dangerous drawback of such grapevine cv. is the uneven colouration of clusters as well as the poor berry setting % (Jakson, 1988). Such defects greatly declined marketing of this cv. in the local and foreign markets. Adjusting the amount of N in vineyards as mentioned by many authors and pomolgists was found to control growth and alleviate the undesirable phenomena occurred in berry characteristics (Weaver, 1976). Many trials had shown the important of organic and biofertilization as a partial replacement of mineral N in fruit orchards (Kannaiyan, 2002). Controlling the uptake of N by organic and biofertilization was accompanied with enhancing yield quantitively and qualitatively as well as checking undesirable phenomena and environment pollution (Dahama, 1999).
Previous studies confirmed the beneficial effects of controlling the uptake of N by using organic and biofertilization on fruiting of grapevines cvs. All studies advised to use N through all sources i.e. inorganic, organic and bioforms (Seleem- Basma and Telep, 2008; Eman et al., 2008; Madian, 2010; Uwakiem, 2011; Abada et al., 2010; Abd El- Hameed et al., 2010; Abd El- Aziz, 2011; Ahmed et al., 2012a, 2012b and 2012c).
The goal of this study was examining the effect of different proportions of inorganic N as well as plant compost enriched with some microorganisms on yield and quality of Crimson seedless grapevines. Selecting the best mineral N proportion and microorganisms applied with plant compost that responsible for enhancing yield and berries quality was considered another target.
MATERIALS AND METHODS
This study was carried out during 2011 and 2012 seasons on 132 uniform in vigour 6- years old Crimson seedless grapevines (own rooted). The vines are grown in clay soil and planted at 2 × 3 meters apat in a private vineyard located at Matay district, Minia Governorate. The chosen vines were irrigated with surface irrigation. Winter pruning was done at the middle of Jan by using cane pruning method with Gable shape supporting system leaving 72 eyes/ vine (on the basis of six fruiting canes × ten eyes + six renewal spurs × two eyes).
Table (1): Analysis of the soil at the trial location:
Constituents |
Values |
: 4.5 |
|
: 15.5 |
|
Clay % |
: 80.0 |
Texture |
: Clay |
: 7.91 |
|
E.C (1: 2.5 extract) (mmhos/ 1 cm 25° C) |
: 1.00 |
: 1.79 |
|
Total N % |
: 0.07 |
: 400 |
|
Available P (Olsen method, ppm) |
: 5.1 |
All the selected vines received regular horticultural practices that already were carried out in the vineyard expect those dealing the application of inorganic, organic and biofertilization.
The present work included the following twenty two treatments:
1. Application of the suitable N (80 g N/ vine/ year) completely via inorganic N ammonium sulphate (20.6 % N) (388 g/ vine).
2. Application of 75 % of the suitable N via inorganic form (291 g ammonium sulphate/ vine) + 25 % plant compost (2.0 % N) enriched with Bacillus polymyxa (1.0 kg compost/ vine).
3. Application of 75 % of the suitable N via inorganic form (291 g ammonium sulphate/ vine) + 25 % plant compost enriched with actinomyces (1.0 kg/ vine).
4. Application of 75 % of the suitable N via inorganic form + 25 % plant compost enriched with Spirulina plantensis (1.0 kg/ vine).
5. Application of 75 % of the suitable N via inorganic form + 25 % plant compost enriched with EM (effective microorganisms) (800 g/ vine).
6. Application of 75 % of the suitable N via inorganic form + 25 % plant compost enriched with Azospirillum sp (890 g/ vine).
7. Application of 75 % of the suitable N via inorganic form + 25 % plant compost enriched with Bacillus circulanse (890 g/ vine).
8. Application of 75 % of the suitable N via inorganic form + 25 % plant compost enriched with Azotobacter vinelandii (890 g/ vine).
9. Application of 50 % of the suitable N via inorganic form (194 g ammonium sulphate/ vine) + 50 % plant compost (2.0 kg/ vine) enriched with Bacillus polymyxa.
10. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with actinomyces (2.0 kg/ vine).
11. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with Spirulina plantensis (2.0 kg/ vine).
12. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with EM (1.6 kg/ vine).
13. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with Azospirillum sp (1.7 kg/ vine).
14. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with Bacillus circulanse (1.7 kg/ vine).
15. Application of 50 % of the suitable N via inorganic form + 50 % plant compost enriched with Azotobacter vinelandii (1.7 kg/ vine).
16. Application of 25 % of the suitable N via inorganic form (179 g ammonium sulphate/ vine) + 75 % plant compost (3.0 kg/ vine) enriched with Bacillus polymyxa.
17. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with actinomyces (3.0 kg/ vine).
18. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with Spirulina plantensis (3.0 kg/ vine).
19. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with EM (2.4 kg/ vine).
20. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with Azospirillum sp (2.67 kg/ vine).
21. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with Bacillus circulanse (2.67 kg/ vine).
22. Application of 25 % of the suitable N via inorganic form + 75 % plant compost enriched with Azotobacter vinelandii (2.67 kg/ vine).
Each treatment was replicated three times, two vines per each.
Table (2): Analysis of untreated plant compost:
Character |
Values |
Moisture % |
: 26.6 |
pH (1:2.5 extract) |
: 8.2 |
E.C (1: 2.5 extract) (mmhos/ 1 cm 25° C) |
: 4.1 |
O.M. % |
: 65 |
Total N % |
: 2.0 |
Total P % |
: 1.5 |
Total K % |
: 1.3 |
Available micronutrients (ppm) |
|
Fe (ppm) |
: 102.5 |
Mn (ppm) |
: 115.0 |
Cu (ppm) |
: 180.0 |
Zn (ppm) |
: 28.0 |
Preparation of plant compost enriched with biofertilizers:
Different layers of plant wastes namely leaves of bananas (500 kg), old F.Y.M. (1000 kg), clover (100 kg) and clay (100 kg) and one of the seven biofertilizers 50 ml Bacillus polymyxa containing 10 × 105 cell, 50 ml actinomyces, 50 ml Spirulina plantensis containing 10 × 106 cell, 50 ml EM containing 50 ml Azospirillum sp containing 10 × 108 cells, 50 ml Bacillus circulanse containing 10 × 109 or Azotobacter vinelandii containing10 × 109 cells were put above ground in pile with area of 3 m length, 3 m width and 2.5 m height. Afterwards, of pile components were stirred repeatly every one week with adjusting moisture content till they ripened when temperature was lowered. These types of enriched composts were analyzed and used.
Table (3): Analysis of different types of compost:
Types of compost |
Values |
|||
OM % |
N % |
P % |
K % |
|
Compost enriched with Bacillus polymyxa |
60.5 |
2.00 |
0.33 |
0.29 |
Compost enriched with actinomyces |
60.0 |
2.00 |
padding: 0cm 5.4pt; width: 44.55pt; height: 3.85pt; background-color: transparent; mso-border-left-alt: thin-thick-small-gap 4.5pt; mso-border-top-alt: solid .5pt; mso-border-bottom-alt: solid .5pt; mso-border-right-alt: thin-thick-small-gap 4.5pt; mso-border-color-alt:
المصدر: REFERENCES
Abada, M.A.M.; Ibrahim- Asmaa, A. and Bondok- Sawsan, A. (2010): How to reduce problems of soil and irrigation water salinity in Superior vineyards? Minufiya. Agric. Res. Vol. 35 No.4 (2): 1977- 1497.
Abd El- Aziz, Y. Z. (2011): Response of Thompson seedless grapevines to application of organic fertilizer humic acid and some bio fertilizers. Ph. D. Thesis Fac. of Agric. Minia Univ. Egypt.
Abd El- Hameed, H.M., Abada , M.A. and Seleem- Basma, M. (2010): Reducing inorganic N fertilizer partially by using yeast, seaweed and farmyard manure extracts in Flame seedless Minia 2nd Conf .Agric. Environ. Sci. pp 81 – 89.
Abd El-Malek, Y. and Ishac, Y. Z. (1968): Evaluation of methods used in counting Azotobacter. J. Apple. Bat. 31: 269 – 275.
Ahmed, F. F and Morsy, M. H. (1999): A new method for measuring leaf area in different fruit species. Minia. J. of Agric .Rec. & Dev.19: 97 – 105.
Ahmed, F. F.; Abd El- aal, A. M. K. and Masoud, A. A. B. (2012a): Attempts for reducing nitrite pollution on Ruby seedless grape by using some organic manures enriched with E.M. Minufiya J. of Agric Res. Vol. 37 No. 3: 611 – 619.
Allam- Aida, M. A.; Ahmed, F. F.; Hefnawy, N. N.; el- Hewety, M. A. and El- Khafagy, H. A. (2012b): Impact of inorganic n and compost enriched with some bacterial strains on fruiting of superior and Flame seedless grapevines as well as dehydrogenase activity in the soil. Minia J. of Agric. Res. & Develop. Vol. (32) No. 3 pp 115 – 130.
Ahmed, F. F.; Mohamed, M. A.; Ragab, M. A.; Merwad, E. A. M. and Mekawy, A. Y. (2012c): Improving productivity of Thompson seedless grapevines by application of some vitamins, Humic acid and farmyard manure extract. Minia of Agric. Res. & Develop. Vol. (32) No. 3 pp 131 – 145.
Association of Official Agricultural Chemists (1995): Official Methods of Analysis 14th Ed., A.O.A.C., Washington, D.C. U.S.A. pp. 490 – 510.
Balo, E.; Prilesszky, G.; Happ, I.; Kaholami, M. and Vega. L. (1988): Soil improvement and the use of leaf analysis for forecasting nutrient requirements of grapes. Potash Review (Subject 9, 2nd suite, No. 61: 1-5).
Casida, L. E.; Klein, D. A. and Santoro, T. (1964): Soil dehydrogenase activity soil. Sci. 98, 371 – 376.
Chapman, H. D. and Pratt, P. P. (1965): Methods of Analysis for Soils, Plants and Water. Univ. of California. Division of Agric., Sci. 172 – 173.
Cochran, W. G. (1950): Estimation of bacterial densities by means of the "most probable Number" Biometrics 6: 105-116.
Dahama, A. K. (1999): Organic farming for sustainable Agriculture. Agro Botanic, Daryagum, New Delhi, India, p. 258.
Eman, A. E.; Saleh, M. S. and Mostafa, E. A. M. (2008): Minimizing the quantity of mineral nitrogen fertilizers on grapevine by using humic acid, organic and biofertilizers. Res. J. of Agric. and bio. Sci. 4: 1, 46 – 50.
Fadl, M. S and Seri El- Deen, S. A. (1978): Effect of N Benzyl adenine on photosynthesis pigments total sugars on olive seedling growth under saline condition, Res. Bull. No. 843, Fac. Agric. Ain shams Univ.
Jackson, D. (1988): Poor fruit set in vines. The significance of early bunch- stem necrosis. Australian & New Zealand Vine Industry J. 3 (2): 42-43.(En, 2 ref., 1 col. Pa.) Dept. of Hort. Lincoln College, Canterbury, New Zealand.
Kannaiyan, S. (2002): Biotechnology of Biofertilizers Alpha Sci. Inter. Itd. P.O. Box 406 Pang Boorne R. 68 M.K. pp 1-275.
Lane, J. H. and Eynon, L. (1965): Determination of reducing sugars by means of Fehling's solution with methylene blue as indicator A.O.AC. Washington D.C.U.S.A. pp. 100-110.
Madian, A.M. (2010): Adjusting the best source and proportion of mineral, organic and bionitrogen fertilizers on Red Roomy grapevines. Ph. D. Thesis Fac. of Agric. Minia Univ., Egypt.
Mead, R.; Currow, R. N. and Harted, A. M. (1993): Statistical Methods in Agriculture and Experimental Biology. Second Ed. Chapman & Hall London. pp 10 - 44.
Passingham, J. V. (2004): On the growing of grapevines in tropics. Acta. Horticulture: VII International Stmposium on Temperate Zone Fruits in the Tropics and Subtropics (65: 39 – 44).
Paul, E. A. and Clark, F. E. (1996): Soil Microbiology and Biochemistry. 2nd Ed Academic Press, San Diego p 1 – 256.
Refaai, M. M. (2011): Productive capacity of Thompson seedless grapevines in relation to some inorganic, organic and biofertilization as well as citric acid treatments. Ph. D. Thesis Fac. of Agric. Minia Univ. Egypt.
Ridnour- Lisa, A.; Sim- Julia, E.; Michael, A. H.; David, A. W.; Sean, M. M.; Garry, R. P. and Douglas, R. S. (2000): A spectrophometric method for the direct and quantitation of Nitric oxide, Nitrite and Nitrate in cell culture Media. Analytical Biochemistry, 281, 223 – 229.
Seleem- Basma, M. and Telep, A.M. (2008): Effect of organic and biofertilizers as a partial substitute for inorganic nitrogen in Superior grapevines. Minia J. of Agric. Res. & Develop. Vol. (28) No. 1 pp. 23 – 35.
Uwakiem, M. Kh. (2011): Effect of some organic, bio and slow release N fertilizers as well as some antioxidants on vegetative growth, yield and berries quality of Thompson seedless grapevines Ph. D, Thesis. Fac. of Agric. Minia Univ. Egypt.
Weaver, R. J. (1976): Grape Growing. A Wiley Interscience Publication John Wiley & Davis, New York, London, Sydney, Tronto pp. 160 – 175.
نشرت فى 23 ديسمبر 2013
بواسطة alaamadian
د.علاء الدين محمد مدين محمود
هدف الموقع هو نشر ثقافة العلوم الزراعية والتنمية وادارة الاعمال المزرعية وزيادة انتاجية المحاصيل الزراعية وتنمية الموارد الذاتية وحلول المشكلات المتعلقة بالزراعة حلولا جوهرية وواقعية وايضا صناعة الزراعة او الزراعة المصنعة والزراعة النظيفة والآمنة »
ابحثتسجيل الدخولعدد زيارات الموقع
800,813
|