محمد شهاب- المزارع السمكية Mohamed Shihab -Aquacultures

يعرض الموقع الأحدث من ومقالات و صور و مواقع تخص الاستزراع السمكى

البلطى النيلى Oreochromis niloticus

Tilapia Historical background

The culture of Nile tilapia (Oreochromis niloticus) can be traced to ancient Egyptian times as depicted on bas-relief from an Egyptian tomb dating back over 4000 years, which showed the fish held in ornamental ponds. While significant worldwide distribution of tilapias. primarily Oreochromis mossambicus, occurred during the 1940s and 1950s, distribution of the more desirable Nile tilapia occurred during the 1960s up to the 1980s. Nile tilapia from Japan were introduced to Thailand in 1965, and from Thailand they were sent to the Philippines. Nile tilapia from Cote d'Ivoire were introduced to Brazil in 1971, and from Brazil they were sent to the United States in 1974. In 1978, Nile tilapia was introduced to China, which leads the world in tilapia production and consistently produced more than half of the global production in every year from 1992 to 2003. The uncontrolled breeding of tilapia in ponds, which led to excessive recruitment, stunting and a low percentage of marketable-sized fish, dampened the initial enthusiasm for tilapia as a food fish. The development of hormonal sex-reversal techniques in the 1970s represented a major breakthrough that allowed male monosex populations to be raised to uniform, marketable sizes. In addition, research on nutrition and culture systems, along with market development and processing advances, led to rapid expansion of the industry since the mid 1980s. Several species of tilapia are cultured commercially, but Nile tilapia is the predominant cultured species worldwide.

Habitat and biology

Nile tilapia is a tropical species that prefers to live in shallow water. The lower and upper lethal temperatures for Nile tilapia are 11-12 °C and 42 °C, respectively, while the preferred temperature ranges from 31 to 36 °C. It is an omnivorous grazer that feeds on phytoplankton, periphyton, aquatic plants, small invertebrates, benthic fauna, detritus and bacterial films associated with detritus. Nile tilapia can filter feed by entrapping suspended particles, including phytoplankton and bacteria, on mucous in the buccal cavity, although its main source of nutrition is obtained by surface grazing on periphyton mats. Sexual maturity in ponds is reached at an age of 5-6 months. Spawning begins when the water temperature reaches 24 °C.

The breeding process starts when the male establishes a territory, digs a craterlike spawning nest and guards his territory. The ripe female spawns in the nest, and immediately after fertilization by the male, collects the eggs into her mouth and moves off. The female incubates the eggs in her mouth and broods the fry after hatching until the yolk sac is absorbed.

Incubating and brooding is accomplished in 1 to 2 weeks, depending on temperature. After fry are released, they may swim back into her mouth if danger threatens. Being a maternal mouth brooder, the number of eggs per spawn is small in comparison with most other pond fishes. Egg number is proportional to the body weight of the female. A 100 g female will produce about 100 eggs per spawn, while a female weighing 600-1 000 g can produce 1 000 to 1 500 eggs. The male remains in his territory, guarding the nest, and is able to fertilize eggs from a succession of females. If there is no cold period, during which spawning is suppressed, the female may spawn continuously. While the female is brooding, she eats little or nothing. Nile tilapia can live longer than 10 years and reach a weight exceeding 5 kg.

Production System

Tilapia are asynchronous breeders. Hormones are not used to induce spawning, which occurs throughout the year in the tropics and during the warm season in the subtropics. Breeding is conducted in ponds, tanks or hapas. The stocking ratio for females to males is 1-4:1 with 2 or 3:1 being the most common. The brood fish stocking rate is variable, ranging from 0.3-0.7 kg/m2 in small tanks to 0.2 - 0.3 kg/m2 in ponds. The popular hapa-in-pond spawning system in Southeast Asia uses 100 g brood fish stocked at 0.7 kg/m2. Spawning ponds are generally 2000 m2 or smaller. In Southeast Asia, a common hapa size is 120 m2.

Brood fish are given high quality feed at 0.5-2 percent of body weight daily. Swim-up fry gather at the edge of a tank or pond and can be collected with fine-mesh nets. Fry collection can begin 10 to 15 days after stocking.

Multiple harvests (six times per day at 5 day intervals) are conducted up to a maximum of 8-10 weeks before pond drainage and a complete harvest is necessary. Tanks must be drained and recycled every 1-2 months because escaped fry are very predaceous on fry from subsequent spawns. Alternatively tanks or ponds are harvested completely after a 2-4 week spawning period. Production of optimum-sized (<14 mm) fry ranges from 1.5 to 2.5 fry/m2/day (20 to 60 fry/kg female/day).

In the South East Asian hapa method, fish are examined individually every 5 days to collect eggs. This system is much more productive, but it is labour intensive. Brood fish are more productive if they are separated by sex and rested after spawning.


Sex-reversal
Commercial tilapia production generally requires the use of male monosex populations. Male tilapia grow approximately twice as fast as females. Therefore, mixed-sex populations develop a large size disparity among harvested fish, which affects marketability. Moreover, the presence of female tilapia leads to uncontrolled reproduction, excessive recruitment of fingerlings, competition for food, and stunting of the original stock, which may not reach marketable size. In mixed-sexed populations, the weight of recruits may constitute up to 70 percent of the total harvest weight. It is therefore necessary to reverse the sex of female fry. This is possible because tilapia do become sexually differentiated for several days after yolk sac absorption. If female tilapia receive a male sex hormone (17 α methyltestosterone, MT) in their feed, they will develop as phenotypic males. Fry collected from breeding facilities need to be graded through 3.2 mm mesh material to remove fish that are >14 mm, which are too old for successful sex reversal. Swim-up fry are generally <9 mm. MT is added to a powdered commercial feed or powdered fish meal, containing >40 percent protein, by dissolving it in 95-100 percent ethanol, which is mixed with the feed to create a concentration of 60 mg MT/kg feed after the alcohol has evaporated. The alcohol carrier is usually added at 200 ml/kg feed and mixed thoroughly until all the feed is moist. The moist feed is air dried out of direct sunlight, or stirred in a mixer until dried, and then stored under dark, dry conditions. Androgens break down when exposed to sunlight or high temperatures. Fry are stocked at 3 000 to 4 000/m2 in hapas or tanks with water exchange. Stocking densities as high as 20 000/m2 have been used if good water quality can be maintained. An initial feeding rate of 20-30 percent body weight per day is gradually decreased to 10-20 percent by the end of a 3 to 4 week sex-reversal period. Rations are adjusted daily, and feed is administered four or more times per day. If sex-reversal is conducted in hapas, the feed must be of a consistency that allows it to float. Otherwise a considerable amount of feed would be lost as it settles through the bottom of the hapa. Sex-reversed fry reach an average of 0.2 g after 3 weeks and 0.4 g after 4 weeks. The average efficacy of sex-reversal ranges from 95 to 100 percent depending on the intensity of management.

Nursery

After sex-reversal, fingerlings are generally nursed to an advanced size before they are stocked into grow-out facilities. This procedure increases survival in the grow-out stage and utilizes growing space more efficiently. Sex-reversed fingerlings are stocked at approximately 20-25 fish/m2 in small ponds and cultured for 2-3 months to an average size of 30-40 g. The ponds should be filled immediately before stocking to prevent the build-up of predaceous aquatic insects. Final biomass at harvest should not exceed 6000 kg/ha. In ponds, fingerlings are given extruded feed (30 percent protein) at an initial rate of 8-15 percent of biomass per day, which is gradually decreased to a final rate of 4-9 percent per day. A series of small cages (<4 m3) with increasing mesh size can be used to rear advanced fingerlings. Sex-reversed fingerlings can be stocked at a rate of 3 000 fish/m3 and grown for 6 weeks until they average 10 g. Fish of this size can be restocked at 2 500 fish/m3 to produce 25-30 g fingerlings in 4 weeks. These fish can be stocked at 1 500 fish/m3 to produce 50-60 g fingerlings in 4 weeks. A recirculation system stocked at 1 000 fish/m3 will produce 50 g fingerlings in 12 weeks. Fingerlings should be fed 3-4 times daily.

Ponds
Pond culture of tilapia is conducted with a variety of inputs such as agricultural by-products (brans, oil cakes, vegetation and manures), inorganic fertilizers and feed. Annual fish yields using tilapia in polyculture with carps, high levels of agricultural by-products and good stock management can reach or exceed 5 tonnes/ha.In monoculture tilapia systems, animal manures provide nutrients that stimulate the growth of protein-rich phytoplankton, which is consumed by filter feeding Nile tilapia. The nutrient content of manures varies. Water buffalo manure has much lower nutrient levels compared to duck and chicken manure. Obtaining sufficient nutrient levels from manures poses a danger of oxygen depletion from excessive loading of organic matter. Therefore, a combination of manures with inorganic fertilizers is used in low-input production systems. In Thailand, applying chicken manure weekly at 200-250 kg DM (dry matter)/ha and supplementing it with urea and triple super phosphate (TSP) at 28 kg N/ha/week and 7 kg P/ha/week produces a net harvest 3.4-4.5 tonnes/ha in 150 days at a stocking rate of 3 fish/m² or an extrapolated net annual yield of 8-11 tonnes/ha. 

Similar yields are obtained solely with inorganic nutrients if alkalinity, a source of carbon, is adequate. In Honduras yields of 3.7 tonnes/ha are obtained at a stocking rate of 2 fish/m2 with weekly application of chicken litter at 750 kg DM/ha and urea at 14.1 kg N/ha. There is sufficient natural phosphorus. Fertilization strategies produce fish to a size of 200-250 g in 5 months. Formulated feeds are necessary to produce larger fish and obtain a higher market price. 
To reduce production costs for domestic markets in developing countries, two strategies are followed: delayed feeding and supplementary feeding. In Thailand, tilapia are stocked at 3 fish/m2 and grown to 100-150 g in about 3 months with fertilizer alone, and then given supplemental feeding at 50 percent satiation until the fish reach 500 g. Net harvest averages 14 tonnes/ha, which is equivalent to a net annual yield of 21 tonnes/ha. In Honduras, a yield of 4.3 tonnes/ha can be obtained with weekly application of 500 kg DM/ha of chicken litter and feed application of 1.5 percent of fish biomass for 6 days a week. However, this management regime is less profitable than the use of chicken litter and urea.

Many semi-intensive farms rely almost exclusively on high quality feeds to grow tilapia in ponds. Male tilapia are stocked at 1-3 fish/m2 and grown to 400-500 g in 5-8 months, depending on water temperature. Normal yields range from 6-8 tonnes/ha/crop but yields as high as 10 tonnes/ha/crop are reported in northeast Brazil, where climate and water quality are ideal. Dissolved oxygen is maintained by exchanging 5-15 percent of the pond volume daily. Higher yields of large fish (600-900 g) are obtained in other regions by using high quality feed (up to 35 percent protein), multiple grow-out phases (restocking at lower densities up to three times), high water exchange rates (up to 150 percent of the pond volume daily) and continuous aeration (up to 20 HP/ha). Fish produced through these expensive methods are generally filleted and sold in export markets

المصدر: FAO
  • Currently 0/5 Stars.
  • 1 2 3 4 5
0 تصويتات / 295 مشاهدة
نشرت فى 30 مايو 2017 بواسطة hatmheet

ساحة النقاش

عدد زيارات الموقع

2,282,615