The skeletal system provides the strong framework for the support and protection of the remainder of the systems, organs and tissues making up the body of the fowl. There have been a number of modifications of the bones found in other animals that enhances the ability of the bird to fly. While fowls are not able to fly well, they still retain that ability to some extent. These modifications include:
1. Pneumatic bones where the air sacs of the respiratory system connect with the cavity of some of the long bones.
2. Fusion of some vertebral sections to provide the rigidity required for flight.
3. The sternum provides a large surface area for the strong attachment of the main muscles of flight.
4. The size of the head has been reduced significantly when compared to other species. A large head would be a hindrance when flying.
5. The neck is quite long in most species to enable the bird to:
o Protect the delicate tissues of the brain from too much jarring when landing. The flexibility of the neck acts as a shock absorber.
o Aid in the reaching of food located on the ground - the rigid body makes this simple activity more difficult without this modification.
o Aid in the adjustment of the centre of gravity needed when the bird changes from the upright position of walking or perching to the more horizontal position of flight.
6. The long tail of many other animals has been reduced to a very short section of fused bones called the pygostyle.
7. The ribs have been modified by the inclusion of the uncinate process - this gives strength to the rib cage.
The vertebral column has 39 separate bones and is divided into five sections or groups - the cervical vertebrae, the thoracic vertebrae, the lumbar vertebrae, the sacral vertebrae and the coccygeal vertebrae. The vertebral column is often described by way of the vertebral formula that is:
C13, T7, L+S14 & C5 = 39 (The vertebral formula refers to the number of vertebrae in each of the major sections of the column)
The atlas-axis at the base of the skull is quite different to all other bones of the vertebral column. The atlas is small and ring-like with a deep cavity for articulation (moving together) with the single projection or condyle of the base of the skull (a condyle is a rounded projection found on many bones).
The axis or epistropheus is also specialised. It is short and possesses a small process, the dens, which, projecting as it does from the cranial end passes through the ring-like atlas and articulates with the occipital condyle. This joint allows the head to turn on the neck.
The seven thoracic vertebrae carry the ribs. All except the last have large ventral processes for the attachment of muscles. Fusion of the second to fifth provides rigidity for the structural strength necessary for flight. It is very difficult to separate the seventh thoracic, lumber, sacral and first coccygeal vertebrae because they are so closely fused for strength. Consequently the lumbar and sacral vertebrae are treated usually as one group. The last of the coccigeal are fused to form the pygostyle and provides a strong foundation for the tail feathers.
There are seven pairs of ribs originating on the thoracic vertebrae. The first, second and sometimes the seventh do not reach the sternum, their other attachment, while the third to sixth and sometimes the seventh do. The third to the sixth have two segments:
1. Vertebral segment
2. Sternal segment
All except the first and last have uncinate processes projecting backward over the outer surface of the next rib and connected to it by a ligament, thus adding strength to the thoracic cavity (uncinate = hooked or bent).
The sternum or breastbone is a complex shape bone and has been described as a quadrilateral, curved plate with processes projecting from each angle, and from the middle of the cranial and caudal border.
The caudal medial projection or metasternum is the longest and carries the tall plate like ridge or sternal crest that runs from front to back on its ventral surface. This crest is more commonly called the keel bone and provides a suitable attachment for the major muscles of flight - the pectoralis and supracoracoides muscles.
The skull is divided into two regions:
1. Rounded cranium
2. Conical facial region.
The distinction between the two is very easy because of the two large orbits or openings into which the eyes fit. Two very thin bones that together form the very thin septum separate these orbits. These bones are:
i. Sphenoid bone
ii. Ethnoid bone
The cranial external appearance indicates a larger brain capacity than there really is. This is because the bone is formed by two layers of dense bone separated by a layer of very spongy bone. The spongy bone contains pockets of air derived from the eustachian tubes that connect the upper respiratory system with the middle ear.
Eardrum, spinal cord, carotid arteries and jugular veins
Large hemispherical cavities at the rear called the tympanic cavities form the location for the eardrum. Openings at the base of the cranium provide for the direct connection of the brain with the spinal cord and common openings in each lateral part of the occipital bone provide for the carotid arteries and jugular veins.
The two optic nerves enter the cranial cavity by one common opening. The hyoid bone is found beneath the skull and forms the framework for the tongue. It has three major sections - the entoglossal, the basi-hyal and the third section, itself in three parts. The entoglossal is contained within the tongue and a movable joint connects it with the basi-hyal and hence the remainder of the bone. See Figure 2.
The skeleton of both the forelimb or wing and the leg is very similar to those of mammals. They are essentially pentadactyl limbs (have five digits) modified for the special purpose of flight and specialised feeding.
The wing skeleton may be divided into:
1. The shoulder girdle:
o Scapula
o Coracoid
o Clavicle
2. The free part:
o The arm - or humerus.
o The forearm - radius and ulna.
o The manus or hand - carpus, metacarpus and digits.
The scapula, unlike the shoulder blade of other animals, is narrow, thin and slightly curved. At the cranial end there is part of a cavity to receive the head of the humerus. The coracoid is the strongest bone of the shoulder girdle. One end carries a flattened articular surface to fit into the sternum. At this end is a hole or foramen for the connection of the clavicular air sac - this bone is a pneumatic bone. The other end connects with the clavicle.
The clavicle or collarbone is thin, rod-like and slightly bent. Its upper or dorsal end is connected with the coracoid bone. The other end is joined to that of the other wing to form the “wish-bone”. The combined clavicles form a bone called the furcula that is capable of acting like a spring and aiding in forming a firm basis of support for the wing. An opening formed by the shape of the three bones - scapula, coracoid and clavicle where they join provides a passage for the tendon of the muscle supracoracoides for connection to the humerus.
The humerus is a large long bone with an ovoid head for articulation with the scapula, coracoid and clavicle. It is a pneumatic bone with a connection with the clavicular air sac. The two bones of the forearm are the ulna -the thicker and longer, and the radius that lies laterally to the ulna. The ulna and radius contain between them a large space called the interosseus space.
The manus or hand consists of the carpus, metacarpus and the digits. The carpus of an adult contains only two bones - the ulnar and radial (note different spelling) that represents the proximal row of mammalian carpal bones. In the embryo cartilaginous nodules represent the distal row but these fuse with the metacarpus and disappear. In the adult the metacarpus is in the form of a single bone produced by the union of three elements corresponding to the first, second and third metacarpal bones of the mammalian limb. Modification and fusion has reduced the number of recognisable digits to three carried by the metacarpals.
The significant features of the skeleton of this limb are:
i. The hipbone is firmly fixed to the vertebral column
ii. There is no ventral union between the two hipbones
iii. There is no independent tarsus
The skeleton of the hind limb or leg is structured as follows:
1. The pelvic girdle or hip bones:
o Ileum
o Ischium
o Pubis or pin bones
2. The free part:
o Femur or thighbone
o Tibia and fibia
o Pes or foot - tarsus, metatarsus and digits or toes
Unlike with other animals e.g. mammals, the bones of opposing sides of the pelvis do not meet on a mid ventral line. They are at their widest separation in this location. Hence the term “girdle” could be said to be a misnomer. This difference could be seen as a weakness and is compensated for by the extensive fusion of the hipbone and the vertebral column. The hipbone, in fact, consists of three bones - the ileum, the ischium and the pubis, all meeting at a deep concavity - the acetabulum into which the head of the femur fits.
The ileum is fused to the last thoracic, lumbar and sacral vertebrae to provide strength and rigidity. The ischium is much smaller and is continuous with the ileum. An opening provides access for the sciatic nerve. The pubis is a narrow strip of bone running along the border of the ischeum to which it is joined for a short distance only. The free posterior end projects backward slightly beyond the ischeum to form the pin or pubic bones.
The femur is a typical long bone and is quite thick and bent. The proximal end has a prominent head that fits loosely into the acetabulum. The distal end carries the deep pulley shaped surface for the “knee cap” and two convex condyles that articulate with the bones of the lower leg. The tibia is a much longer bone than the fibula and is much thicker at the proximal end than it is at the distal end. The proximal row of tarsal bones is fused to the distal end of the tibia. The fibula is greatly reduced and consists of a slender spicule (needle like) and has a flattened head for attachment to the proximal head of the tibia.
In the adult there is no independent tarsus. In the embryo the two rows exist but the proximal fuses with the tibia. The adult metatarsus is a long bone actually formed by the union of the second, third and fourth metatarsal bones. In males a small conical projection on the medial side supports the spur. Most breeds have four digits - three facing forwards and one facing back. There are some breeds that have five digits.
The skeleton has the functions of providing support and protection for the remainder of the systems and tissue. Bone is living tissue and it’s structure is largely affected by the nature of stresses placed on it. The chemical composition is also quite variable although it consists mainly of calcium and phosphorus in the form of crystals of hydroxyapetite [3Ca3(PO4)2.Ca(OH)2] deposited on a fine matrix of collagen fibres together with living cells throughout.
Deposition and adsorption of bone
The metabolic activity in bones is continuous and the microscopic structure is constantly changing. Small cells, the osteoblasts are responsible for depositing new bone tissue, while large polynucleate cells called osteoclasts resorb existing bone. Other cells called osteocytes, found in the calcified mass of bone, help maintain the bone structure. Thus the skeleton is a major reservoir of calcium and phosphorus. Therefore, it is very important to maintain the proper levels of these minerals in the diet (99% of body calcium and 80% of body phosphorus are stored in the skeleton). Sodium and magnesium are other minerals of importance in bone structure. These may be drawn upon when the diet of the animal contains inadequate supplies.
The microstructure of the bone changes continuously as bone is a target for a number of influences. Chemicals, in particular calcium and phosphorus, are added or removed from the bone continuously. Other influences include:
i. The level of certain hormones e.g. growth hormone, parathyroid hormone, calcitonin, oestrogenic and androgenic hormones in the blood
ii. The level of vitamin D in the diet
Young chickens are very sensitive to vitamin D deficiency. This vitamin is required by the chicken for the assimilation and use of calcium and any deficiency will be seen as a typical calcium deficiency e.g. as rickets. Vitamin D is found in a number of slightly different forms and cholecalciferol (D3) is ten times more active than ergocalciferol (D2) in preventing rickets.
Ergosterol, a compound under the skin of animals including poultry is converted to usable Vitamin D by the rays of the sun. In the layer, the skeleton is particularly vulnerable to the demands made for calcium for eggshell formation.
All bones of the body are formed in pre-existing tissues that they either replace or use in their structure. It is usual to find that bones pass through three stages as they develop:
i. Prechondral or membranous stage
ii. Chondral or cartilaginous stage
iii. Ossification stage (bone formation)
Most of the bones of the fowl go through the cartilaginous stage. A few such as the bones of the skull omit this stage. As far as the chicken is concerned, the first stage, the membranous stage, takes place in the egg during embryo development. Only the cartilaginous stage and the ossification stages are easily identified.
The secretion of special cells called chondroblasts brings about cartilage formation. The ossification process then hardens the cartilage when the bone takes up minerals mainly calcium carbonate. Long bones increase in length by the ossification process. In birds much of the bone is laid down in successive layers to form dense, compact bone covered by the cellular periosteum on the outside. Long bones are usually hollow with the hollow filled with bone marrow and extensions of the air sacs.
Compact bone is modified by the formation of special cavities that eventually mineralise by depositing concentric layers of new bone, the new structure being called the haversian system. If a transverse section (slice) of bone is ex