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Abstract—We have seen a continued growth of robotic
devices being tested in neurorehabilitation settings over the last
decade, with the primary goal to improve upper- and lower-
motor function in individuals following stroke, spinal cord
injury, and other neurological conditions. Interestingly, few
studies have investigated the use of these devices in improving
the overall health and well-being of these individuals despite
the capability of robotic devices to deliver intensive time-
unlimited therapy. In this article, we discuss the use of robotic
devices in delivering intense, activity-based therapies that may
have significant exercise benefits. We also present preliminary
data from studies that investigated the metabolic and cardiac
responses during and after 6 months of lower-limb robotic
training. Finally, we speculate on the future of robotics and
how these devices will affect rehabilitation interventions.
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INTRODUCTION

In the articles of this special Journal of Rehabilita-
tion Research and Development (JRRD) issue, we have
presented numerous examples of how effective activity-
based therapies can improve important health qualities in
individuals following stroke and spinal cord injury (SCI).
For example, following long-term manual-assisted tread-
mill training, individuals with incomplete SCI demon-
strate lower total cholesterol and low-density lipoprotein,

increased muscle mass, and a muscle fiber-type conver-
sion to more fatigue-resistant type IIa and I fibers (see
Hicks and Martin Ginis, p. 241, this issue). Similar
improvements can be observed in stroke patients, where
improvements in cardiovascular performance, muscle
endurance, and functional gait can be realized with exer-
cise-based interventions (Hafer-Macko et al., p. 261, this
issue). What these and other studies have demonstrated is
that with appropriate interventions, individuals with
neurological injuries can realize important cardiovascular
and metabolic benefits of exercise-based interventions
beyond simply improvements in function.

While exercise is clearly important to the health and
well-being of individuals after stroke, SCI, and frankly
most neurological disorders, many of these individuals
cannot participate in conventional exercise programs
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because of significant motor impairments. Therefore,
while walking on a treadmill may benefit an individual’s
cardiovascular performance, the safety risks to someone
with balance and stability deficits outweigh the potential
benefits. One possible solution is to use interventions that
are safer and reduce demands on coordination and bal-
ance. For example, functional electrical stimulation
(FES) has been shown to be quite beneficial in building
muscle mass and slowing the progression of bone min-
eral loss in SCI (Dudley-Javoroski, p. 283, this issue).
Studies have reported similar effects that have used FES-
based bicycling in SCI, perhaps most notably the
reported gains in health and well-being that Christopher
Reeve experienced [1]. The limitations with such inter-
ventions are that they may not always be possible (e.g.,
sensate subjects may not tolerate electrical stimulation)
and they do not necessarily allow for the practice of func-
tional, coordinated movements. While pedaling a bicycle
could surely be seen as a precursor to gait [2], functional
walking needs to occur at some point. If an intervention
could be designed that promotes intensive exercise in the
context of a functional task (e.g., gait), improvements in
both function and overall health may be realized. To this
end, robotic devices may be one possible solution.

The original focus of robotics-based interventions
was to take advantage of the fact that the central nervous
system is quite plastic (Lynskey et al., p. 229, this issue)
so that with intensive, task-specific movements, individ-
uals with stroke and SCI can regain function and perhaps
some level of independence. Significant evidence sug-
gests that robotic therapy improves upper- and lower-
limb function after SCI [3–4] and stroke [5]. Ironically,
little has been reported on the exercise benefits individu-
als may experience following robotic therapy, particu-
larly in gait. In this article, we review robotic technology,
outline the potential benefits of using these devices for
exercise-based interventions, and present some early evi-
dence that suggests robotic-based interventions can have
positive exercise benefits in individuals with neuro-
logical injuries.

REHABILITATION ROBOTIC DEVICES

Rehabilitation robotic devices come in many forms,
none of which resembles The Terminator in the famous
Arnold Schwarzenegger movie. While most rehabili-
tation robots attempt to re-create therapeutic interven-

tions that are often used in the clinic, such as reaching
movements or grasping objects, some robots offer greater
capacities that would be daunting for a physical therapist
to deliver. One cannot doubt that robots targeting the
upper limbs may provide exercise benefits if they allow
subjects to practice repetitive reaching under some level
of resistance. However, one could argue that other less-
sophisticated interventions could provide the same bene-
fits for a fraction of the cost. We therefore propose that
the role of upper-limb robots will likely continue to focus
on improving motor function rather than exercise bene-
fits. While this role may be true for the upper limb, for
which subjects can perform interventions in a seated and
therefore safe position, providing gait-training interven-
tions poses additional challenges.

As outlined in the articles by Macko et al. (p. 323)
and Hicks and Martin Ginis (p. 241) in this JRRD issue,
treadmill training following stroke and SCI has signifi-
cant cardiovascular and muscular effects. Yet providing
such an intervention to individuals with poor balance and
stability provides added risks, particularly if the intensity
of the intervention is near the individual’s limits. Robotic
gait trainers provide an excellent alternative because they
add a component of safety for the patient and therapist
that allows individuals to train at higher intensity levels
for longer durations. While we highlight the Lokomat
(Hocoma AG; Volketswil, Switzerland) robotic gait-
orthosis in an article by Colombo et al. [6], we need to
stress that many other gait-training systems are now being
developed that parallel the Lokomat [7–10].

The Lokomat was developed in the late 90s to help
automate manual-assisted body weight-supported (BWS)
treadmill training. The device, as shown in Figure 1, is
an exoskeleton that attaches to the outside of the sub-
ject’s legs and assists the subject as he or she ambulates
on the treadmill. Small direct current (DC) motors drive
the hip and knee joints while dorsiflexion is provided at
the ankle with two elastic straps. The latest version of the
Lokomat control software allows for variable robot assis-
tance, ranging from full passive mode in which the
device moves the subject’s legs through a prescribed tra-
jectory to a compliant mode in which the robot provides
no active assistance. Recently, a pediatric Lokomat ver-
sion was released to the public that allows children
approximately 4 to 12 years of age to participate in gait-
training programs.

The major benefits of training with the Lokomat are
that patients can practice intensive gait training early
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after their injuries in a safe and controlled environment.
DeJong and colleagues recently published a longitudinal
study that looked at factors important to stroke outcomes
[11–12]. They found that early interventions (e.g., time
postinjury) and intensity were factors that strongly corre-
lated with gains in function. These two factors, early
training and intensity, are supported by the Lokomat.
First, because of the BWS system, subjects can practice
walking much earlier in their rehabilitation program,
since the risk of falling is eliminated. This added security
allows individuals to begin walking as soon as they are
medically stable, which is important not only for func-
tional returns but also for prevention of secondary com-
plications such as deep venous thrombosis (DVT),

muscle atrophy, cardiovascular deterioration, and pneu-
monia. One could also argue that getting subjects to walk
early after their injuries can have positive psychological
effects. Second, the intensity of the training can be
graded by adjusting of the BWS level, changing the
walking speed, and varying the amount of robot assis-
tance. Each of these training parameters place additional
cardiovascular demands on the individual and can be
altered both within and across training sessions. In addi-
tion, unlike treadmill training sessions that may be
limited by therapist fatigue, training sessions on robotic
devices like the Lokomat are time-unlimited, since they
are actuated by DC motors.

Most of the studies to date have focused on the lower-
limb robotic devices as clinical training tools that
improve walking ability, yet they have overlooked the
added exercise benefits of the intervention. The U.S. Sur-
geon General recommends that “persons of all ages
should include physical activity in a comprehensive pro-
gram of health promotion and disease prevention and
should increase their habitual physical activity to a level
appropriate to their capacities, needs, and interest,” and
this is echoed by the National Cholesterol Education
Panel, American Heart Association, Centers for Disease
Control and Prevention, American Diabetes Association,
American College of Sports Medicine, and others. Unfor-
tunately, the reality is that diminished levels of fitness
account for a large part of accelerated cardiovascular dis-
order (CVD) and increased body fat after SCI [13–20]
and 25 percent of young, healthy persons with SCI have a
level of fitness insufficient to perform essential activities
of daily living [21]. We know that fitness and well-being
are improved in persons with SCI by exercise condition-
ing [13,22–27] and higher levels of fitness are associated
with reduced CVD risk [28–34]. Furthermore, several
reports have highlighted the beneficial effect of exercise
conditioning in persons with risk factors for CVD [28–
29,32–34]. Here, we highlight three studies that have
investigated metabolic and cardiac responses in SCI dur-
ing robotic-assisted gait training, as well as some prelimi-
nary work investigating changes in cardiovascular
performance after long-term robotic gait training.

METABOLIC AND CARDIAC RESPONSES
DURING ROBOTIC GAIT TRAINING IN SCI

Israel et al. published a recent study that compared
muscle activation patterns and metabolic responses in

Figure 1.
Lokomat (Hocoma AG; Volketswil, Switzerland) robotic gait orthosis.
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individuals with incomplete SCI who walked on a tread-
mill with either therapist assistance or Lokomat assis-
tance [35]. Twelve individuals classified as C or D on the
American Spinal Injury Association (ASIA) Impairment
Scale [ASIA, 2004] were tested on two separate sessions.
In one session, two therapists assisted the subject as he or
she ambulated on a treadmill under 30 to 40 percent
BWS. Each therapist provided enough assistance so that
the subject could clear his or her toe during swing and
achieve adequate knee extension during stance. In a sepa-
rate test session, each subject walked under the same lev-
els of BWS, but the Lokomat assisted rather than the
therapists. One should note that in these tests, the Loko-
mat was run in passive mode. In this mode, the Lokomat
moves each subject’s legs through a prescribed trajectory
regardless of the subject’s intensions (akin to a continu-
ous passive machine). Each subject was asked to walk
“with the robot” and try to match the machine’s move-
ments to the best of his or her ability. For both treadmill
(therapist-assisted) and Lokomat sessions, muscle
activity was collected from tibialis anterior, soleus,
medial gastrocnemius, vastus lateralis, rectus femoris,
and medial hamstrings. Metabolic measurements
included rates of oxygen consumption (VO2) and carbon
dioxide production, while metabolic cost (or equivalent
power) was calculated from these metrics.

The investigators found that during therapist-assisted
treadmill walking, individuals with incomplete SCI dem-
onstrated significantly greater VO2 and metabolic cost
than during Lokomat-assisted training. On average, sub-
jects achieved VO2 levels of 14.0 ± 3.9 mL/kg/min when
walking on the treadmill with the therapist’s assistance,
but only 9.0 ± 2.4 mL/kg/min when walking with Loko-
mat assistance. For power measures, subjects generated
approximately 3.1 ± 1.4 W/kg when walking with thera-
pist assistance but only 1.9 ± 0.8 W/kg with Lokomat
assistance. (Measurements are mean ± standard deviation
unless stated otherwise.) While significant differences
were observed in metabolic parameters for treadmill and
Lokomat walking, in general, no significant differences
were found in muscle activation patterns in six lower-
limb muscles (for amplitude or timing of activity) during
the gait cycle.

We should reiterate that metabolic differences were
observed between therapist-assisted and Lokomat-
assisted walking trials when subjects were instructed to
walk as the device walked and match the kinematic tra-
jectory prescribed by the Lokomat. However, in separate

trials in which subjects were asked to maximize their
effort during therapist- and Lokomat-assisted trials, no
differences were found in metabolic parameters or mus-
cle activation patterns.

The results from Israel et al.’s study indicate that simi-
lar muscle activation patterns and metabolic responses can
be achieved in the Lokomat when compared with thera-
pist-assisted training [35]. However, this finding only
applies when the appropriate instructions or training con-
ditions are given to the subject. This finding exposes a
serious limitation with robotics. That is, if too much BWS
or robotic assistance is provided to the subject or if the
instructions are not clear, the subject may become compla-
cent and allow the robot to assume a greater workload. As
a result, the cardiovascular demands on the subject will
decrease dramatically. In therapist-assisted treadmill train-
ing, this decreased effort level is not an issue, since thera-
pists can continuously sense how much effort they are
providing the subject and therefore indirectly measure the
subject’s effort level. This finding clearly emphasizes that
therapists need to know the robot equipment, understand
how to change parameters to continuously challenge the
subjects, and be able to assess when the workload is inap-
propriate for the subject’s abilities.

Nash and colleagues investigated metabolic and car-
diac responses during Lokomat training in a 25-year-old
female subject with a motor complete C3 to C4 (third to
fourth cervical vertebrae) chronic SCI [36]. In this study,
they measured VO2, minute ventilation (VE), and heart
rate (HR) during seated resting and supported standing
and while walking 40 minutes in the Lokomat. They
found that the resting VO2 of 50 mL/min increased
immediately at the onset of walking to 118 mL/min,
while VE increased from 7.2 L/min in rest to 9.6 L/min
during walking. HR also increased from 76 bpm during
rest to 93 bpm during Lokomat walking.

The findings in this study indicate that even in motor
complete SCI with lesions interrupting vagus and phrenic
nerve pathways, significant cardiac responses can be elic-
ited. While the investigators speculated that the increased
metabolic response was attributed to reflex activity gener-
ated by stretching the muscles, this claim cannot be vali-
dated, since muscle activity was not recorded in this
experiment. What this study does highlight is strength of
robotic gait trainers. Since the robot can stabilize the lower
limbs during training, individuals with no function below
their injury level can be trained for extended durations.
Although therapists could administer similar interventions,
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whether they could maintain consistency over an extended
training session is questionable. Additionally, therapists
engaged in treadmill training paradigms have reported
repetitive strain injuries and lower back problems. Train-
ing individuals with motor complete SCI may have addi-
tional health benefits beyond cardiovascular conditioning,
such as prevention of DVT, improved circulation, slowing
of bone mineral loss, and improved psychological state.
Unfortunately, no studies to date have reported such
effects, so these potential benefits are speculative at this
point.

CHANGES IN METABOLIC AND CARDIAC 
RESPONSES FOLLOWING LONG-TERM 
ROBOTIC-ASSISTED GAIT TRAINING IN SCI

While the studies just described investigated within-
session changes in metabolic and cardiac responses during
robotic-assisted walking, they did not investigate whether
people with SCI will experience a cardiovascular or meta-
bolic training effect following repeated training sessions.
A randomized controlled trial is currently underway at the
National Rehabilitation Hospital (NRH) in Washington,
DC, and the Miller School of Medicine, University of
Miami, to quantify the effects of 6 months of robot-
assisted BWS treadmill training on selected measures of
fitness in persons with SCI. Subjects are people with
ASIA C or D traumatically induced SCI between 1 and
6 months postinjury.

Subjects are randomized to either exercise training
using robot-assisted BWS treadmill training or usual reha-
bilitative care. The experimental group participates in
72 Lokomat training sessions lasting 1 hour, three times a
week for 6 months. Here, subjects walk in the Lokomat at
an initial training speed of 1.9 km/h, progressing to a max-
imum of 3.2 km/h. During the training sessions, the levels
of BWS and robot assistance are decreased as tolerated at
each training session so that weight-bearing and workload
can be increased. Subjects walking in the Lokomat are
encouraged by the physical therapist and a computer-
based biofeedback system to actively move the robotic
legs. Subjects in the experimental group often begin Loko-
mat training while they are inpatients, where the Lokomat
training supplements the standard physical therapy they
receive at NRH or The University of Miami. Since these
subjects often continue outpatient therapy following their
discharge, the Lokomat training simply supplements their

usual care until they complete their outpatient therapy pro-
gram. At that time, subjects only receive Lokomat train-
ing. The control group receives the same inpatient and
outpatient therapy programs; however, they do not receive
the supplemental Lokomat therapy.

Changes in metabolic responses are assessed for both
groups at baseline and again at 3 and 6 months (Figure 2).
A resting 12-lead electrocardiogram is performed and ana-
lyzed for rate, rhythm, and contraindications to exercise
testing throughout the evaluation session [37]. Metabolic
responses to exercise are continuously monitored by the
open-circuit method on a metabolic analyzer as described
by Nash et al. [36]. Resting metabolism and HR are
measured for 6 minutes with the subject in the seated posi-
tion, for controlling metabolic and chronotropic responses
to the upright position, and after 6 minutes of BWS stand-
ing. The subject then ambulates in the Lokomat at the
matched subpeak work rate of 1.8 km/h with the least BWS

Figure 2.
Metabolic testing in Lokomat (Hocoma AG; Volketswil, Switzerland).
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tolerated for 6 minutes. Both the 3- and 6-month follow-up
metabolic tests are repeated at the same speed (1.8 km/h)
and same percent BWS provided during the initial testing.

To date, five subjects have been trained on the Loko-
mat and four subjects have been assigned to the control
group. The age range for the sample is 24 to 59 years, with
an average age of 44.1 years. The Table summarizes
interim trends for the subjects trained on the Lokomat.

The working hypothesis is that with the use of a stan-
dardized work rate on the Lokomat for all three tests, an
exercise training effect in the intervention group would be
reflected by lower resting and peak HRs, VO2, and respi-
ratory exchange ratio (RER) values on the 6-month test
compared with the baseline test. Data from the 6-month
test demonstrated a dramatic decrease in resting and peak
HRs but a modest increase in VO2 accompanied by a
small decrease in RER at peak exercise. By comparison,
mean values in the usual group for resting HR and peak
HR decreased only 8.4 and 1.4 percent, respectively,
while peak VO2 increased 5.1 percent on the final test.
While no statistical conclusions can be made from this
small set of data, the trend indicates that a training effect
may have been achieved after 72 sessions of Lokomat
walking.

CONCLUSIONS AND FUTURE DIRECTIONS

While the future of robotics in neurorehabilitation
programs is still unclear, early evidence suggests that
interventions such as robotic-assisted gait training may
improve gait as well as cardiovascular and metabolic per-
formance. Some of the advantages of robotics devices in
delivering intensive therapy have been outlined, such as
the capability to train for longer time periods, at higher

intensities, and in a well-controlled environment. How-
ever, using robotic devices has some disadvantages.
These devices are very expensive, they sometimes break
down and require routine service, and perhaps the biggest
disadvantage, they do not have the same “feel” as thera-
pists do. That is, for interventions such as therapist-
assisted treadmill training, the therapist can continuously
monitor important characteristics of the training, such as
the subject’s effort level, spastic contractions, and
fatigue. While robots have high-resolution sensors that
can also monitor such events, they currently are not pro-
grammed to do so. We hope that next-generation robots
will have better monitoring capabilities and interact
much more, providing “as needed” assistance. Integrat-
ing advanced concepts such as virtual reality [38] and
quantifying impairments such as weakness and spasticity
[39] has already begun. Adding measures of cardiac and
metabolic responses would surely make these devices
well-rounded additions to rehabilitation clinics.
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