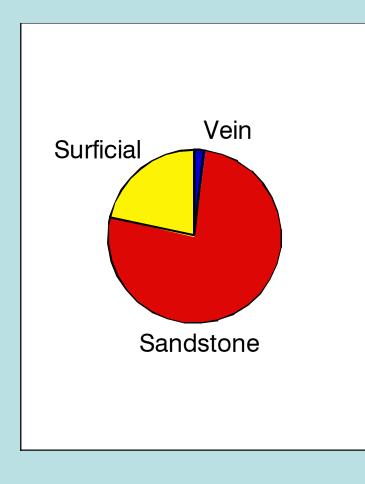

Sandstone-hosted uranium deposits of the Huemul district, Argentina, a new uranium deposit model for the western United States

Conversion and an and a second second second

ENERGIA MINERAL

Jon P. Thorson


CALYPSO URANIUM

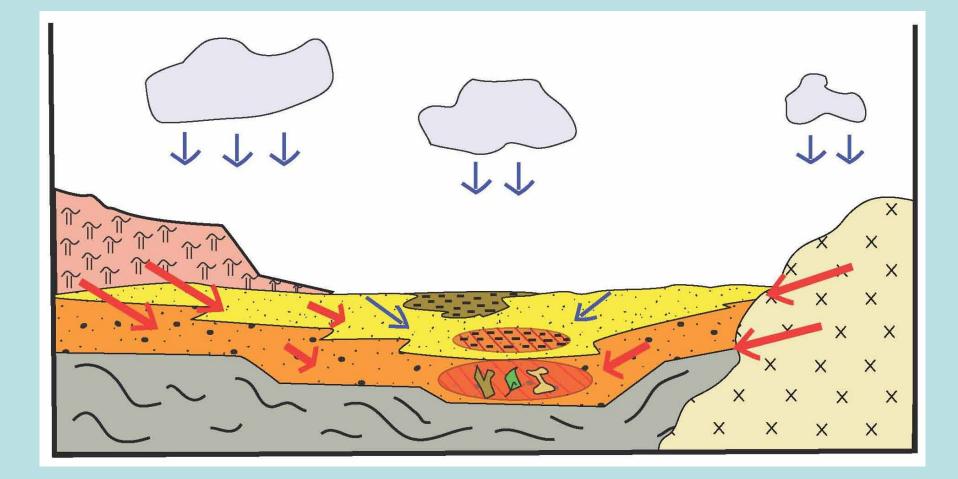
Uranium in Argentina

Exploration for uranium began in the 1940s

 2,509 metric tonnes production
 17,000 metric tonnes reserves and resources (<US\$130/kg, Red Book 2003)
 55,000 metric tonnes U potential resource CNEA (World Nuclear Association)

Uranium deposits in Argentina

(IAEA, Technical Report Series Nº 270)

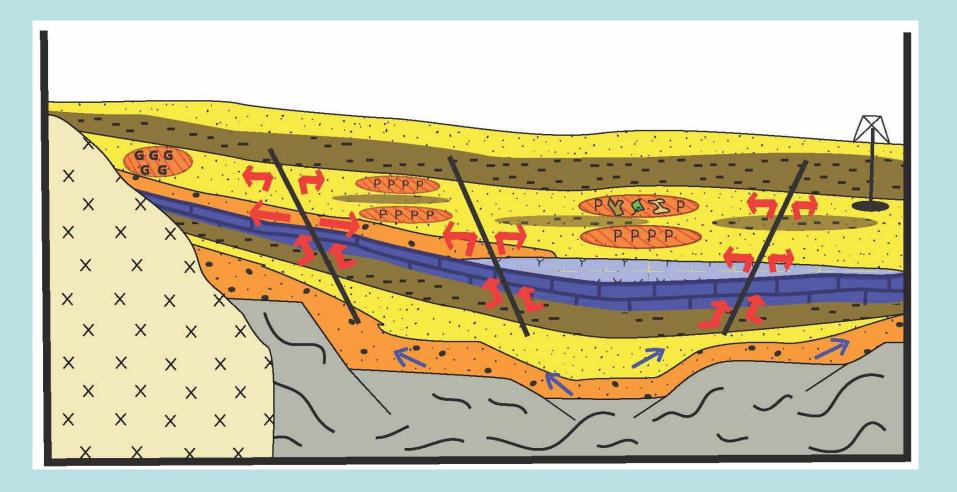

Uranium Deposits in Sedimentary Rocks: Three genetic models

- I. Deposited by descending meteoric waters
- II. Uranium derived from black shales during generation of hydrocarbons
 III.Uranium derived from destruction of accessory minerals from igneous rocks

I. Deposition by descending meteoric waters

- Origin of U: Acidic igneous rocks, predominently pyroclastics, containing between 20ppm U and 100 ppm U (Simov, 1989)
- Liberation of U during devitrification
- □Migration in descending meteoric water with high fO2
- Precipitation by local reductant or reduction of porosity
- Geochemistry: U (+- Mo)
- □Example.: Cerro Solo

1. Deposition by descending meteoric waters


II. Uranium derived from black shales during generation of hydrocarbons Source of Uranium: Black shale (Example.: Devonian Ohio Shale, SDO-1)

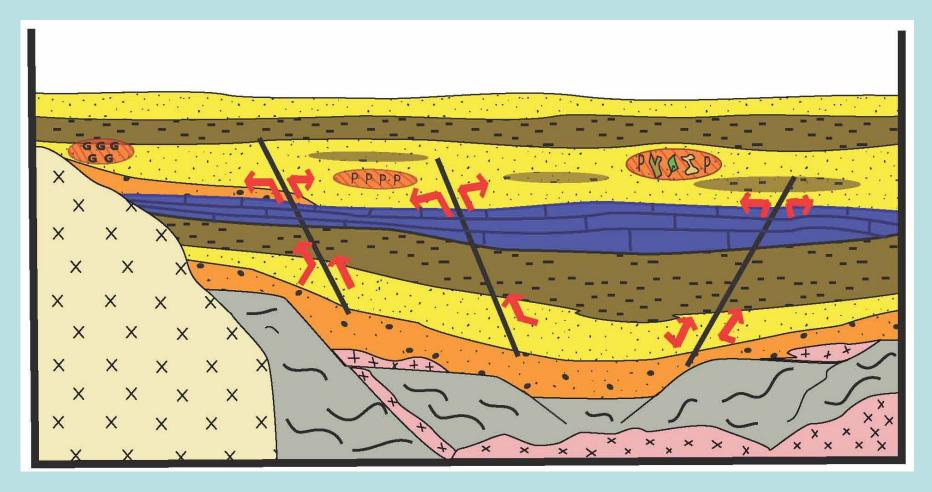
Element	mg/kg	s.d.	Element	mg/kg	s.d.
As	68.5	8.6	Ni	<mark>99.5</mark>	9.9
Ba	397	38	Pr	8.9	0.66
Ce	79.3	7.8	Rb	126	3.9
Co	<mark>46.8</mark>	<mark>6.3</mark>	Sc	13.2	1.5
Cr	<mark>66.4</mark>	7.6	Sm	7.7	0.81
Dy	6.0	0.65	Sr	75.1	11.0
Eu	1.6	0.22	U	48.8	6.5
Ga	16.8	1.8	V	160	21
La	38.5	4.4	Υ	40.6	6.5
Mo	<mark>134</mark>	21	Yb	3.4	0.46
Nb	11.4	1.2	Zn	64.1	6.9
Nd	36.6	3.3	Zr	165	24

II. Uranium derived from black shales during generation of hydrocarbons

- Expulsion of uranium in the "petroleum window"
- □Lateral migration and rise of acidic Cl-rich brines that bleach and alter rocks
- Precipitation by changes in oxidationreduction conditions
- Geochemistry: U (+-V,As,Mo,Ni,Cd,Co,Cr)
- □ Example.: Don Otto

II. Uranium derived from black shales during generation of hydrocarbons

III. Uranium derived from the destruction of accessory minerals from igneous rocks


Type of Granite	Accesory minerals						
Peraluminous	Monazite	(Ce,La,Nd,Th)PO4	0.5-3%				
	low Th uraninite	<i>U02</i>	Th<2-3%				
	"+-Xenotime	YPO4					
	"+-Zircon	ZrSiO4					
	"+-Apatite	Ca5(PO4)3(OH, F, Cl)	<0.2%U				
High-Ca	Titanite	Ca5(PO4)3(OH, F, Cl)	REE <4%				
Meta-aluminous	Thorite	(Th,U)SiO4	up to 15%U				
	Amphibole (+-Pyroxene,	(+-Th rich uraninite)					
	Titanite, allanite (+-Th						
Peralkaline	Zirco, Nb-Ta-Ti oxides						

from Cathelineu et al, 1989

III. Uranium derived from the destruction of accessory minerals from igneous rocks

- Erosion of acidic ingeous rocks into a basin with anomalous geothermal gradient
- Destruction of monazite and other accessories above 200°C
- □Lateral migration and rise of acidic Cl-rich brines that bleach and alter rocks
- Precipitation by changes in oxidationreduction conditions
- Geochemistry: U (+-REE,Y,Th)
- □ Example. : Huemul

III. Uranium derived from the destruction of accessory minerals from igneous rocks

Pathfinder Geochemistry in Argentina Uranium Exploration

Cuenca	Modelo	Ag	As	Cd	Ce	Co	Cr	Cu	Ga	La
	Propuesto	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
San Jorge	I	<0.5	54	<1	45	7	8	30	6	27
Gondwánica	п	2.7	470	99	54	34	72	53	×2	102
Neuquina	III	115.4	318	<10	493	67	34	54865	107	65
Cuenca	Modelo	Mo	Ni	Р	Pb	Th	U	V	У	Zn
	Propuesto	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
San Jorge	I	19	5	>10000	66	<10	952	89	95	57
Gondwánica	II	40	85	838	>10000	250	>10000	73	26	446
Neuquina	III	15	34	454	507	241	16431	25516	260	512

Huemul District, Argentina bitumen saturated sandstone

Huemul District, Argentina open cut in mine outcrop

Huemul Distict production

550,000 # U3O8 average grade probably about 0.3% U3O8

Huemul District, Argentina bitumen saturated sandstone with uranium

Lisbon Valley Uranium District

- □SE Utah, San Juan County,
- Lisbon Valley anticline, salt cored
- □80 million pounds U3O8 production 1953-1984
- □Basal Triassic Chinle Fm. conglomerate and upper Permian Cutler Fm. Sandstone

□Geochemistry U +/- V, As, Co, Cr, Cu,

Lisbon Valley District, Utah bitumen saturated sandstone

LV 4C3 395 to 433 - bitumen impregnated sandstone and conglomerate Basal Chinle Fm. (contact with Cutler at 425 ft)

Lisbon Valley District, Utah Cutler Fm. dune facies sandstone with bitumen and uranium

LV 4C3 559 to 612 ft, (575 ft to 585 ft, bleached fine-grained sandstone with bands of bitumen assayed 155 ppm U)

US Uranium Districts associated with hydrocarbons

Lisbon Valley, Utah - bitumen
San Rafael Swell, Utah - bitumen
La Sal, Utah and Colorado - bitumen
Uravan, Colorado - bitumen
Gas Hills, Wyoming - natural gas
South Texas - natural gas